• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 307
  • 107
  • 34
  • 21
  • 20
  • 10
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 583
  • 583
  • 315
  • 294
  • 125
  • 89
  • 80
  • 76
  • 70
  • 68
  • 64
  • 64
  • 60
  • 58
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Exploring the Relationship between Design and Outdoor Thermal Comfort in Hot and Dry Climate

January 2019 (has links)
abstract: Moderate physical activity, such as walking and biking, positively affects physical and mental health. Outdoor thermal comfort is an important prerequisite for incentivizing an active lifestyle. Thus, extreme heat poses significant challenges for people who are outdoors by choice or necessity. The type and qualities of built infrastructure determine the intensity and duration of individual exposure to heat. As cities globally are shifting priorities towards non-motorized and public transit travel, more residents are expected to experience the city on their feet. Thus, physical conditions as well as psychological perception of the environment that affect thermal comfort will become paramount. Phoenix, Arizona, is used as a case study to examine the effectiveness of current public transit and street infrastructure to reduce heat exposure and affect the thermal comfort of walkers and public transit users. The City of Phoenix has committed to public transit improvements in the Transportation 2050 plan and has recently adopted a Complete Streets Policy. Proposed changes include mobility improvements and creating a safe and comfortable environment for non-motorized road participants. To understand what kind of improvements would benefit thermal comfort the most, it is necessary to understand heat exposure at finer spatial scales, explore whether current bus shelter designs are adequate in mitigating heat-health effects, and comprehensively assess the impact of design on physical, psychological and behavioral aspects of thermal comfort. A study conducted at bus stops in one Phoenix neighborhood examined grey and green infrastructure types preferred for cooling and found relationships between perception of pleasantness and thermal sensation votes. Walking interviews conducted in another neighborhood event examined the applicability of a framework for walking behavior under the stress of heat, and how differences between the streets affected perceptions of the walkers. The interviews revealed that many of the structural themes from the framework of walking behavior were applicable, however, participants assessed the majority of the elements in their walk from a heat mitigation perspective. Finally, guiding questions for walkability in hot and arid climates were developed based on the literature review and results from the empirical studies. This dissertation contributes to filling the gap between walkability and outdoor thermal comfort, and presents methodology and findings that can be useful to address walkability and outdoor thermal comfort in the world’s hot cities as well as those in temperate climates that may face similar climate challenges in the future as the planet warms. / Dissertation/Thesis / Doctoral Dissertation Sustainability 2019
212

Into the Comfort Zone: Understanding Swine Thermal Preference

Lindsey A Robbins (10071391) 01 March 2021 (has links)
Exposure to thermal stress can negatively impact an animals' overall welfare, resulting in decreased body condition, lower reproductive success, and in severe cases, mortality. The swine industry has prioritized efficient production and as a result has gained rapid improvements in lean growth and increase litter sizes. Unfortunately, modern swine are unable to cope with the negative effects of heat stress. Thus, it is crucial to understand the preferred temperature of swine to create recommendations on when to initiate mitigation strategies to combat the negative effects of thermal stress. However, several different factors contribute to an animals' thermal comfort and thermal preference will differ based on age, reproductive stage, social context, early life thermal stress, and behavior. Thus, making it exceptionally difficult to classify an animal's thermal comfort zone. These studies aim to highlight how those factors influence thermal comfort in pigs and help guide recommendation polices for housing pigs in their preferred temperatures.<br>
213

Indoor thermal comfort and associated adaptive measures towards an energy efficient new campus in Borlänge, Sweden

Margelou, Dimitra January 2020 (has links)
Thermal comfort of the occupants is of highest importance specifically in Scandinavian countries. Especially for an educational building, both students and working staff spend most of their time indoors, therefore it is critical to guarantee a healthy and productive indoor climate environment around a whole year. Taking into account that Högskolan Dalarna plans to move into a newly renovated building in the center of Borlänge in 2022, this thesis focus on this essential topic and tries to dig out some valuable adaptive suggestions for the coming schematic design phase. In the next design phase, it aims to satisfy design requirements of Miljöbyggnad 3.0 certification at sliver level, as well as operation requirements of BREEAM InUse at very good level. Consequently, the aim of this thesis project is to have an overall thermal comfort assessment of all representative rooms in the project of the new campus building in Borlänge, Sweden. The thermal comfort assessment consists of both winter situation and summer situation. Both situations are completely under recommended study method from Miljöbyggnad 3.0 with the technical assistant of dynamic building simulation software tool IDA ICE 4.8. Several aspects have been investigated in terms of indoor thermal comfort. The first impacting element is future climate scenarios, so as to check how the future climate will affect the thermal comfort performance. Afterwards, both external and internal shading devices were individually applied to examine and quantify the benefits in terms of indoor thermal comfort. Lastly, the advanced control shading strategies were studied to further improve the thermal comfort performance based on the appropriate conventional shading method. The results showed that future climate scenario has limited impact on the thermal comfort performance when rooms are under temperature controlled via room heating and cooling units. Regarding the shading methods, the internal shading was proved to give a better overall performance. If there is the chance to implement automation shading device, the author recommends the “zone air temperature with operative temperature setpoint 21°C, in which proved to be significantly improved the thermal comfort levels that previously discovered in the vulnerable zones. Therefore, it is expected significantly to reduce the energy dependency during cooling season.
214

Low-Temperature Baseboard Heaters in Built Environments

Ploskic, Adnan January 2010 (has links)
The European Union has adopted a plan to decrease 20 % of total energy consumption through improved energy efficiency by 2020. One way of achieving this challenging goal may be to use efficient water-based heating systems supplied by heat pumps or othersustainable systems. The goal of this research was to analyze and improve the thermalperformance of water-based baseboard heaters at low-temperature water supply. Both numerical (CFD) and analytical simulations were used to investigate the heat efficiency of the system. An additional objective of this work was to ensure that the indoor thermal comfort was satisfied in spaces served by such a low-temperature heating system. Analyses showed that it was fully possible to cover both transmission and ventilation heatl osses using baseboard heaters supplied by 45 °C water flow. The conventional baseboards, however, showed problems in suppressing the cold air down-flow created by 2.0 m high glazing and an outdoor temperature of – 12 °C. The draught discomfort at ankle level was slightly above the upper limit recommended by international and national standards. On the other hand, thermal baseboards with integrated ventilation air supply showed better ability to neutralize cold downdraught at the same height and conditions. Calculations also showed that the heat output from the integrated system with one ventilation inlet was approximately twiceas high as that of the conventional one. The general conclusion from this work was that low-temperature baseboards, especially with integrated ventilation air supply, are an efficient heating system and able to be combined with devices that utilize the low-quality sustainable energy sources such as heat pumps. / <p>QC 20101029</p>
215

Svenska byggföretags arbete med miljöanpassningar : Fokuserad på minskning av inomhustemperaturer / Swedish building companies’ environmental adaptations : with focus on lowering temperatures inside buildings

Mannelqvist, Jasmin January 2022 (has links)
Due to climate change, extreme weather and heatwaves will become more frequent inSweden. Heatwaves have been proven all around the world to cause increased sickness and death rates in populations. Even in the Nordic countries heatwaves can cause negative health effects and sickness already in the current climate. Because of this, it´s important to know what building companies are doing to prevent overheating in their buildings and how they adapt their buildings for a changed future climate. The purpose of this study was to examine how Swedish building companies adapt their buildings to prevent future overheating and what method they are using to do so. The result showed that most of the interviewed companies prioritized adapting their buildings to prevent overheating. Companies which did not prioritize this issue argued that they follow customer demands or that they have not perceived overheating as a problem. There were no significant differences between companies in southern and northern Sweden in which methods the companies decide to use to lower temperatures inside buildings. To avoid risks related to overheated apartments in the future every company in the building sector needs to prioritize these problems and government agencies needs to construct stricter laws regarding indoor temperatures. Thus, the companies that are working based on customer request would also need to adapt to a changed future climate.
216

Thermal comfort study on a renovated residential apartment in Tjärna Ängar, Borlänge

Mnla Ali, Tammam January 2021 (has links)
The Swedish government in the 1960th initiated “The Million Program” to build million residentialunits to cover the housing shortage between 1965 to 1975. Tjärna Ängar neighborhood in Borlängemunicipality was built during the million-program period, where these residential units became old,and the indoor environment is uncomfortable for the residents.Recently, there have been extensive energy-efficient renovations to improving the energyefficiency,indoor air quality, and thermal comfort of these buildings. The renovation project, withcooperation between Dalarna University and the local housing company (Stora Tunabyggen)started in 2015 by renovating three buildings in the Tjärna Ängar neighborhood.This study was conducted at one of these three retrofitting buildings (Kornstigen 25) to investigatethe thermal comfort in the building following energy retrofit. The assessment of the thermalcomfort in this study is based on Fanger's model with the use of predicted mean vote (PMV) andpredicted percentage of dissatisfied (PPD) to assess the obtained measurements.An online questionnaire survey with building occupants was conducted to give a betterunderstanding of the current situation of the retrofitting building before and after the renovationregarding thermal comfort. Based on the measurement, the thermal sensation of the occupants isslightly cool according to the standard’s sensation scale during the period of the measurement. Anonline questionnaire survey assures that the occupants were feeling slightly cool during someperiods of the day inside the apartments.
217

Influence of the types of grass of green roofs for the design of thermal comfort in buildings

Rodríguez, José, Vilela, Karina 01 January 2022 (has links)
The main objective of the research was to study the effect of the Stenotaphrum secundatum and Zoysia japonica grasses on the higher and lower environment temperature and lower relative humidity; the secondary objective was to compare whether the Stenotaphrum secundatum grass has a greater impact on the environment parameters of comfort than the Zoysia japonica species. Six materials were used for the extensive green roof, each one forming a layer of the system, which were placed on the concrete slab and in an upward direction, including: PVC geomembrane, Polyester asphalt carpet, Pumice stone, Planar geodren, Prepared soil with guano, compost, muss, and Substrate. In order to make measurements of the higher and lower ambient temperature, a digital thermometer and lower relative humidity meter was used. Stenotaphrum secundatum and Zoysia japonica were used as grass species, as they were the most representative of the grasses used in extensive green roofs. The experimentation was carried out for 2 months from September to October of 2021, having built 3 modules of 1000x600mm roofs, including 1module of the concrete roof with ceramic covering and 2 modules of extensive green roof with two types of grass: Stenotaphrum secundatum and Zoysia japonica. The readings of the environment temperature and relative humidity of the higher and lower part were taken in six points of each module to have a greater number of representative measurements. The watering of the 2 green roof modules with grass was carried out twice a week, applying 5L of water per module. The results indicate that the Zoysia japonica grass is the one that presents a better behavior before the higher ambient temperature and that the Stenotaphrum secundatum grass behaves better before the lower ambient temperature and lower relative humidity. The conclusions indicate that the Stenotaphrum secundatum grass behaves better temperature and relative humidity; the two grass types exhibit different behavior.
218

BAYESIAN METHODS FOR LEARNING AND ELICITING PREFERENCES OF OCCUPANTS IN SMART BUILDINGS

Nimish M Awalgaonkar (12049379) 07 February 2022 (has links)
<p>Commercial buildings consume more than 19% of the total energy consumption in the United States. Most of this energy is consumed by the HVAC and shading/lighting systems inside these buildings. The main purpose of such systems is to provide satisfactory thermal and visual environments for occupants working inside these buildings. Providing satisfactory thermal/visual conditions in indoor environments is critical since it directly affects occupants’ comfort, health and productivity and has a significant effect on energy performance of the buildings. </p> <p>Therefore, efficiently learning occupants’ preferences is of prime importance to address the dual energy challenge of reducing energy usage and providing occupants with comfortable spaces at the same time. The objective of this thesis is to develop robust and easy to implement algorithms for learning and eliciting thermal and visual preferences of office occupants from limited data. As such, the questions studied in this thesis are: 1) How can we exploit concepts from utility theory to model (in a Bayesian manner) the hidden thermal and visual utility functions of different occupants? Our central hypothesis is that an occupant’s preference relation over different thermal/visual states of the room can be described using a scalar function of these states, which we call the “occupant’s thermal/visual utility function.” 2) By making use of formalisms in Bayesian decision theory, how can we learn the maximally preferred thermal/visual states for different occupants without requiring unnecessary or excessive efforts from occupants and/or the building engineers? The challenge here is to minimize the number of queries posed to the occupants to learn the maximally preferred thermal/visual states for each occupant. 3) Inferring preferences of occupants based on their responses to the thermal/visual comfort-based questionnaire surveys is intrusive and expensive. Contrary to this, how can we learn the thermal/visual preferences of occupants from cheap and non-intrusive human-building interactions’ data? 4) Lastly, based on the observation that the occupant population decompose into different clusters of occupants having similar preferences, how can we exploit the collective information obtained from the similarities in the occupants’ behavior? This thesis presents viable answers to the aforementioned questions in the form of probabilistic graphical models/frameworks. In future, I hope that these frameworks would prove to be an important step towards the development of intelligent thermal/visual systems which would be able to respond to occupants’ personalized comfort needs. Furthermore, in order to encourage the use of these frameworks and ensure reproducibility in results,various implementations of this work (namely GPPref, GPElicit and GPActToPref) are published as open-source Python packages.</p><br>
219

Vulnerability of U.S. Residential Building Stock to Heat: Status Quo, Trends, Mitigation Strategies, and the Role of Energy Efficiency

January 2019 (has links)
abstract: Thermal extremes are responsible for more than 90% of all weather-related deaths in the United States, with heat alone accounting for an annual death toll of 618. With the combination of global warming and urban expansion, cities are becoming hotter and the threat to the well-being of citizens in urban areas is growing. Because people in modern societies (and in particular, vulnerable groups such as the elderly) spend most of their time inside their home, indoor exposure to heat is the underlying cause in a considerable fraction of heat-related morbidity and mortality. Notably, this can be observed in many US cities despite the high prevalence of mechanical air conditioning in the building stock. Therefore, part of the effort to reducing the overall vulnerability of urban populations to heat needs to be dedicated to understanding indoor exposure, its underlying behavioral and physical mechanisms, health outcomes, and possible mitigation strategies. This dissertation is an effort to advance the knowledge in these areas. The cities of Houston, TX, Phoenix, AZ, and Los Angeles, CA, are used as test beds to assess exposure and vulnerability to indoor heat among people 65 and older. Measurements and validated whole-building simulations were used in conjunction with heat-vulnerability surveys and epidemiological modelling (of collaborators) to (1) understand how building characteristics and practices govern indoor exposure to heat among the elderly; (2) evaluate mechanical air conditioning as a reliable protective factor against indoor exposure to heat; and (3) identify potential impacts from the evolving building stock and a warming urban climate. The results show strong associations between indoor heat exposure and certain health outcomes and highlight the vulnerability of elderly populations to heat despite the prevalence of air conditioning systems. Given the current construction practices and urban warming trends, this vulnerability will continue to grow. Therefore, policies promoting climate adaptive buildings features, as well as better access to reliable and affordable AC are needed. In addition, this research draws attention to the significant potential health consequences of large-scale power outages and proposes the implementation of passive survivability in regulations as one important preventative action. / Dissertation/Thesis / Doctoral Dissertation Engineering 2019
220

Assurance of Indoor Environmental Quality through Building Diagnostics at Schematic Design

Metzger, A. Susanne 28 January 1999 (has links)
With increasing knowledge about the indoor climate in recent years, preventive methods to avoid health problems caused by deficient building performance may become preferable to reactive methods. Benefits from preventive actions have been suggested for late building design phases, construction, and building operations, however, few data are available that demonstrate the benefits of preventive actions in early planning phases. In a case study, expected building performance in respect to indoor air quality and thermal conditions in a large judicial facility in North America was evaluated retrospectively at the end of the schematic design and substantial completion phases. A process for evaluation of building performance at schematic design is developed from existing procedures for building diagnostics in operating buildings. Criteria for evaluation of expected building environmental quality at schematic design as available from standards and guidelines are presented. The results of the study show that building diagnostics at schematic design can be an effective mean of prevention of occupant health problems. Further findings indicate that the assurance of indoor environmental quality can be improved, if the criteria for expected building performance are defined and complied with from early on. It is concluded that implementation of building diagnostics in early project phases can reduce the likelihood of adverse health effects in operating buildings. / Master of Science

Page generated in 0.0766 seconds