• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 39
  • 14
  • 1
  • 1
  • 1
  • Tagged with
  • 160
  • 160
  • 97
  • 47
  • 44
  • 39
  • 39
  • 39
  • 38
  • 23
  • 22
  • 21
  • 20
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Kogeneracinės jėgainės šilumos akumuliacinės talpos veikimo režimų tyrimai / Research of Heat Storage Tank Operation Modes in Cogeneration Plant

Streckienė, Giedrė 21 June 2011 (has links)
Disertacijoje nagrinėjami būdingi šilumos akumuliacinės talpos veikimo režimai, susiformuojantys nedidelės galios kogeneracinėje jėgainėje, tiriamas šiluminės stratifikacijos susidarymas tokioje talpoje ir atliekamas jos modeliavimas. Pagrindinis disertacijos tikslas – ištirti nedidelės galios kogeneracinės jėgainės šilumos akumuliacinės talpos veikimo režimų ypatumus, sudaryti algoritmą, padedantį parinkti tokios talpos tūrį ir pateikti modelį, leidžiantį nustatyti šiluminę stratifikaciją akumuliacinėje talpoje bet kuriuo jos veikimo metu. / The dissertation investigates typical operation modes of the heat storage tank in the small-scale cogeneration (CHP) plant, analyses formation of thermal stratifi-cation in such storage tank and presents the simulation of the stratification. The main aim of the dissertation is to investigate peculiarities of operation modes of heat storage tank in small-scale CHP plant, develop an algorithm allowing to choose the storage tank volume and present a model allowing determination of thermal stratification in the storage tank at any time of its operation.
102

Kogeneracinės jėgainės efektyvumo didinimo šilumos akumuliavimo sistemos pagalba analizė / Investigation of Cogeneration Power Plant Efficiency Increase by Heat Accumulator Systems

Puidokas, Tautvydas 21 June 2011 (has links)
Darbe apžvelgtos užsienio valstybių centralizuoto šilumos tiekimo (CŠT) sistemų darbo režimai ir pagrindiniai parametrai. Išskirtinai atsižvelgta į CŠT sitemas, kuriose yra kogeneracinės jėgainės su šilumos akumuliavimo talpomis. Darbe pateikiami pavyzdžiai, kokios gali būti ir kaip pritaikomos šilumos akumuliavimo talpos. Tokių sistemų pagrindiniai privalumai yra tai, jog naudojantis ŠAT sistema galima subalansuoti CŠT sistemose esančių įrenginių darbo režimus, taip pat esant kogeneracinėms jėgainėms galima pereinant nuo šilumos vartojimo grafiko jų darbą adaptuoti prie elektros vartojimo grafiko. Darbe analizuojamas Mažeikių miesto šilumos tiekimo sistemos darbas esant kogeneracinėms jėgainėms su šilumos akumuliacijos talpomis. Modeliuoti galimi įrenginių darbo režimai dviem prioritetais: pastoviosios galios ir maksimaliosios pikinės elektros energijos gamybos. Gauta, kad efektyvus šilumos akumuliacijos kiekis turėtų būti 200 MWh tai – atitiktų 4 tūkst. m3 talpą dirbant Mažeikių ŠT darbo parametrais. Nustatyta, kad valandinis ŠAT sistemos prijungimo vamzdžių pralaidumas turi būti 17 MW. Ekonominėje dalyje vertinamas ŠAT sistemos pelningumas. ŠAT sistemos pelningumas dirbant pastovios galios režimu yra neigiamas, taigi projektas būtų ekonomiškai nenaudingas, tačiau ŠAT sistemą naudojant pikinės elektros gamybai pelningumas svyruotų nuo -0,5 mln. Lt iki 0,9 mln. Lt, priklausomai nuo to, kaip susiformuos pikinės elektros rinka. / The thesis surveys working regimes and main parameters of centrally supplied heat (CSH) systems of foreign states. The exclusive attention is paid to CHS systems, having combined heat and power plans with heat accumulation tanks. Examples are provided in the thesis of the types of heat accumulation tanks and their application. The main advantages of such systems are that working regimes of devices in the CHS systems may be balanced with the help of HAT system, as well as that their work may be adapted from heat usage schedule to electricity usage schedule, if combined heat and power plants are used. The thesis analyzes the work of Mažeikiai town heat supply system, having combined heat and power plants with heat accumulation tanks. Possible working regimes of devices in two priorities have been modelled: fixed power and maximum peak electric power production. It has been received that the efficient quantity of heat accumulation should be 200 MWh; this would conform to 4 thousand m3 tank under Mažeikiai HS working parameters. It has been determined that the hourly capacity of pipeline of HAT system connection must be 17 MW. Economical part evaluates profitability of HAT system. HAT system’s profitability, using the fixed power for maintenance is negative; the project would be economically unprofitable; however using HAT system for production of peak electric power, profitability would fluctuate from -0.5 million LTL to 0.9 million LTL, depending on formation of peak... [to full text]
103

Assessment of Energy Recovery Technology in China : Mechanical ventilation system with energy recovery

Piippo, Kaj January 2008 (has links)
<p><!-- --></p><p>In the wake of the economic growth of the Chinese market the past couple of decades, the energy consumption has surged. One of the biggest consequences of the increased energy consumption is a massive increase in CO<sub>2</sub> emission. In fact, China has overtaken the U.S. as the biggest emitter of CO<sub>2</sub>. In light of this energy-saving technology gets more important to implement. District heating is one of the solutions used with success in parts of China where heating is required. In this paper, an energy recovery technology has been examined for two climate zones in China namely a mechanical ventilation system using a flat-plate counter-flow heat exchanger. Beijing is located in a cold zone while Hong Kong is located in a zone with hot summers and mild winters. Cooling load calculations were conducted manually using the RTS - method developed by ASHRAE and heating load calculations were conducted for Beijing using Swedish guidelines stated in BBR. Further, the energy recovery unit (VM1) that was provided by Systemair AB was tested using a rig where different outdoor conditions were simulated. This data was then used to evaluate the potential for energy recovery in a model apartment located in the two zones. As expected, significant differences were obtained when comparing the performance for the two locations.</p><p> </p> / Redan avklarad
104

Combined Electricity Production and Thermally Driven Cooling from Municipal Solid Waste

Udomsri, Seksan January 2011 (has links)
Increasingly intensive efforts are being made to enhance energy systems via augmented introduction of renewable energy along with improved energy efficiency. Resource constraints and sustained high fossil fuel prices have created a new phenomenon in the world market. Enhanced energy security and renewable energy development are currently high on public agenda worldwide for achieving a high standard of welfare for future generations. Biomass and municipal solid waste (MSW) have widely been accepted as important locally-available renewable energy sources offering low carbon dioxide (CO2) emissions. Concerning solid waste management, it has become a critical issue in Southeast Asia since the most popular form for waste disposal still employs open dumping and landfilling. While the need for a complete sustainable energy solution is apparent, solid waste management is also an essential objective, so it makes sense to explore ways in which the two can be joined. Electricity production in combination with energy recovery from flue gases in thermal treatment plants is an integral part of MSW management for many industrialized nations. In Sweden, MSW is considered as an important fuel resource for partially meeting EU environmental targets within cogeneration. However it is normally difficult to justify traditional cogeneration in tropical locations since there is little need for the heat produced. Similarly, MSW-fired cogeneration usually operates with low capacity during non-heating season in Sweden. Therefore, it is very important to find new alternatives for energy applications from waste, such as the implementation of thermally driven cooling processes via absorption cooling in addition to electricity production. The work presented herein concentrates first on an investigation of electricity generation from MSW power plants and various energy applications from waste in tropical urban areas. The potential for various types of absorption chillers driven by MSW power plants for providing both electricity and cooling is of particular interest. Additionally a demonstration and analysis of decentralized thermally driven cooling in district heating network supplied by low temperature heat from a cogeneration of MSW have been conducted. This study aims at developing the best system configuration as well as finding improved system design and control for a combination of district heating and distributed thermally driven cooling. Results show that MSW incineration has the ability to lessen environmental impacts associated with waste disposal, and it can contribute positively towards expanding biomass-based energy production in Southeast Asia. For electricity production, the proposed hybrid dual-fuel (MSW/natural gas) cycles feature attractive electrical efficiency improvements, leading to greenhouse gas emissions reduction. Cogeneration coupled with thermally driven cooling is a solution that holds promise for uniting enhanced sustainability with economic advantages. The system offers great opportunity for primary energy saving, increasing electrical yield and can significantly reduce CO2 emissions per unit of cooling as compared to compression chiller. The demonstration and simulation have also revealed that there is a potential with some modifications and improvements to employ decentralized thermally driven cooling in district heating networks even in temperate regions like Sweden. Thus, expanding cogeneration towards trigeneration can augment the energy supply for summer months in Europe and for year-round cooling in tropical locations. / QC 20110408
105

Role Of Mixed Convection In Cooling Of Electronics

Gavara, Madhusudhana Rao 12 1900 (has links)
Cooling of electronic components is one of the most important issues concerned in the electronic industry for design of equipment. Maintaining the temperature of an electronic device within its safe operating temperature limits is essential to operate the equipment safely with proper functionality. According to the Arrhenious law of failure rate, for a device with activation energy 0.65eV, every 10°C increase in temperature doubles the failure rate. Recent miniaturisation of components and high device heat dissipation rates lead to high heat fluxes, which cause temperature rise. Hence, there is an increasing need for research to achieve high heat removal rates and optimal design. Several cooling techniques are used for cooling of electronics based on the application and cooling rate requirements. Air-cooling of electronics has a wide range of applications due to its greater reliability, simplicity, easy maintenance, low cost, easy availability of coolant (air), and light weight. Air-cooling is also free from boiling and dripping problems. Air-cooling is used in applications such as avionics, cooling of personal computers, cooling of data centers, and in automobile electronics. In a typical electronic cooling application, cooling fluid is driven by the combination of external pressure forces and buoyancy forces. Based on the relative contribution of these forces towards the total driving force, the cooling techniques can be categorized as forced, natural or mixed convection cooling. However, in many of the electronic cooling situations, such as in the applications with very high heat fluxes, tall Printed Circuits Boards (PCBs) with low forced convection velocity, and in large scale applications such as data centers, the contributions of the buoyancy forces and external pressure forces for the total driving force are comparable, which results in a mixed convection situation. In the present study, mixed convection in vertical channels heated with five heating configurations, which represent typical electronic cooling applications, is studied numerically. The five different heating configurations are channels with flush-mounted continuous heater, flush-mounted strip heaters, flush-mounted square block heaters, protruding rib heaters and protruding square heaters. The first three configurations are categorised as flush-mounted heating configurations and the latter two configurations are categorised as protruded heating configurations. One of the channel walls represents the substrate on which the heaters are mounted and the heat sources represent the heat generating electronic components. Heat transfer under steady state conditions is considered in the study. The study includes laminar as well as turbulent heat transfer. For a systematic study of mixed convection, an analytical or semi-analytical formulation is desirable for a simplified model, as it can highlight the effect of relevant non-dimensional parameters on the heat transfer characteristics of a system. The results of a simplified model can be used for benchmarking the results of practical situations. Hence, before numerically solving the governing equations for mixed convection in channels, mixed convection boundary layer flows over a heated vertical plate is considered for study. Perturbation technique is used to solve the boundary layer equations with non-isothermal boundary conditions. The perturbation analysis is carried out for an arbitrarily variation of wall temperature or heat flux. Subsequently, the results are extended to find heat transfer rates in the cases of power-law variation of temperature and heat flux, as special cases. It is always required to design a cooling system to remove maximum possible amount of heat, keeping the device temperature within its safe operating limits. Hence, optimization of heat transfer in boundary layers is attempted, whose results can be used as guidelines to achieve optimal heat transfer in practical situations of channels with continuous as well as discrete heating. Similarity analysis is used for the optimization of heat distribution in boundary layer flows. In the similarity analysis, in the search of optimal heat transfer from the plate, the boundary layer equations are solved for various power-law heat flux variations and the appropriate power-law variation of optimal heat transfer is found. Similarly, the heat flux variation for optimal heat transfer is found for the cases of natural and forced convection, as they are the limiting cases of mixed convection. In the numerical part of the study, the generalised three-dimensional governing equations for the five heating configurations considered for the study are solved numerically with appropriate boundary conditions. Separation of natural, forced and mixed convection regimes is carried out in all the heating configurations using a criterion based on individual contributions of pressure force and buoyancy force towards the total driving force for the fluid movement. Heat transfer characteristics are studied in laminar as well as turbulent regimes in terms of parameters such as Grashof number, Reynolds number, Nusselt number, maximum temperature of heaters, pressure drop across the channel, and so on. The influence of conjugate effects on the heat transfer characteristics is studied by varying the substrate thermal conductivity. A systematic comparison of various effects such as the effect of discrete heating in plain channels, effect of discrete heating in channels with heated ribs, and the effect of three-dimensional protrusions on heat transfer, is achieved. The parameters in the individual configurations, which affect heat transfer, are explored for better cooling solutions. Optimal heat distribution among the heaters to minimise the temperature of the hottest heater for a given total amount of heat generation in the channel is found for all the channel configurations, which are heated either continuously or discretely. In the process of finding the optimal heat distribution among heaters, guidelines are taken from the optimal heat distribution in boundary layer flows. Compared to usual optimization approaches such as genetic algorithm, the present physics based optimisation procedure requires fewer runs to arrive at the optimal distribution. The fluid flow characteristics in all the three configurations with flush-mounted heaters are found to be similar. However, heat transfer characteristics in channels with flush-mounted square heaters differ from those in the other two flush-mounted channel configurations. Hot spots with higher temperatures are found at heater locations in channels with flush-mounted square heaters. The effect of substrate follows the same trend in all the flush-mounted configurations. At lower thermal conductivities, the maximum temperature decreases sharply with increasing thermal conductivity. However, at higher conductivities, the influence reduces. In all the flush-mounted configurations, heat transfer will not be influenced by substrate thermal conductivity increment at conductivities more than 150 times the fluid thermal conductivity. The fluid flow and heat transfer characteristics in channels with protruded heaters differ significantly from those in channels with flush-mounted heaters. The protrusions in the channels interact with the fluid flow and make it different from that of smooth channels. In turn, the protrusions affect heat transfer characteristics in the channels. The influence of the protrusions on the heat transfer and locations of hot spots in the domain is examined. Effect of thermal conductivity in channels with protruded square heaters is similar to that in channels with flush-mounted heaters. However, conductivity in channels with protruded rib heaters affects the heat transfer in a wider range of conductivities than in the other heating configurations. Unlike in the other configurations, at low thermal conductivities, maximum temperature does not drop sharply with increase of conductivity. In channels with protruded square heaters, staggering arrangement of heaters results in higher heat transfer rates than those with in-line heater arrangement. In all the configurations, pressure drop is found to be independent of Grashof number in the range of heat dissipation rates considered in the study. Heat transfer rates in turbulent region are much higher than the heat transfer rates in laminar regime. However, the pressure drops encountered are also high in the turbulent regime. Turbulent heat transfer results in a more uniform temperature distribution in channels. The cooling performances of the individual configurations are compared. For a given pressure drop the cooling performances decreases in the order of flush-mounted strip heating, protruded square heating, flush-mounted square heating, protruded rib heating. For a given inlet fluid flow rate, the cooling performances decreases in the order of protruded rib heating, protruded square heating, flush-mounted square heating, flush-mounted strip heating. However, for a given inlet fluid flow rate, the pressure drop increases in the order of increasing cooling performance.
106

Thermophysical Properties of Aqueous Solutions Used as Secondary Working Fluids

Melinder, Åke January 2007 (has links)
Secondary working fluids (secondary refrigerants, heat transfer fluids, antifreezes, brines) have long been used in various indirect re-frigeration and heat pump systems. Aqueous solutions (water solu-tions) have long been used as single phase (liquid only) secondary working fluids for cooling in supermarkets, ice rinks, heat recovery systems, heat pumps and other applications. However, aqueous solutions are increasingly used also for freezers in supermarkets and other applications in low temperature refrigeration. Of importance when comparing different secondary working fluids for indirect systems are the following basic thermophysical properties: freezing point, density, viscosity, specific heat, and thermal conductivity. Reliable data of these properties are needed to choose suitable fluid and to make technical calculations of an indirect refrigeration or heat pump system. The main intention of this work has been to select thermophysical property data with good or acceptable technical accuracy of a number of aqueous solutions that can be used by the refrigeration and heat pump industry, rather than focusing on a limited number of property values or scientifically very accurate measuring techniques. A thorough literature search was in view of this made to find the most reliable property values of aqueous solutions. Detailed literature references are given for thermo-physical properties of the following aqueous solutions, without other additives: Ethylene and propylene glycol, ethyl and methyl alcohol, glycerol, ammonia, potassium carbonate, calcium, lithium, magnesium and sodium chlorides as well as potassium acetate and potassium formate. Some laboratory measurements were made of most of the fluid types when literature values were incomplete or deemed unreliable. Methods used are briefly described and results are given. Much of the work was reported on in the Engineering Licentiate Thesis: Thermophysical properties of liquid secondary refrigerants, A Critical Review on Literature References and Laboratory Measure-ments (Melinder 1998a). That material forms the basis for the charts and tables used in the IIR-publication Thermophysical properties of liquid secondary refrigerants (Melinder, 1997). The present thesis reports on an update made since 1998, including re-view work done on two additional fluids not covered in Melinder (1998a). The thesis describes how the selection of property values results in tables and charts intended for the industry. Coefficients for poly-nomial equations are generated from these property values using a Matlab program and this material is intended as a useful tool for computer treatment. Aqueous solution of ethyl alcohol is used as example to see how this process is made. This choice of fluid can also be seen as a test of this method, as the basic thermophysical properties of aqueous solutions of ethyl alcohol present more chal-lenges than the other fluids examined. A comparison is made of a few types of aqueous solutions used as secondary working fluids for two types of applications. The first example is bedrock heat pumps and the second is cooling cabinets in a supermarket. An effort is made to see how the additive con-centration affects the thermal performance. Most aqueous solutions used as single-phase secondary fluids can also be used as ice slurry, a fluid consisting of liquid and ice where small ice crystals are produced, usually with some type of ice generator. The ice crystals are then transported to the cooling object from which heat is removed when ice crystals melt. This results in less temperature change in the cooling object and makes it also possible to reduce the volume flow rate and to use smaller pipe dimensions in the system. In order to choose a secondary fluid for ice slurry use and to make correct technical calculations of the ice slurry system there is a need to examine and evaluate thermo-physical properties and other aspects of ice and of the aqueous solution used. For dimensioning purposes it is of interest to estimate ice mass fraction and enthalpy values and enthalpy-phase diagrams can serve that purpose. This thesis presents enthalpy-phase diagrams made by author that besides isotherms contain lines with ice fraction and lines connecting enthalpies at freezing point and 1, 2, etc. to 10 K below the freezing point curve. / QC 20100609
107

Flow Boiling Heat Transfer in Single Vertical Channels of Small Diameter

Martin Callizo, Claudi January 2010 (has links)
Microchannel heat exchangers present many advantages, such as reduced size, high thermal efficiency and low fluid inventory; and are increasingly being used for heat transfer in a wide variety of applications including heat pumps, automotive air conditioners and for cooling of electronics.However, the fundamentals of fluid flow and heat transfer in microscalegeometries are not yet fully understood. The aim of this thesis is to contribute to a better understanding of the underlying physical phenomena in single-phase and specially flow boiling heat transfer of refrigerants in small channels. For this purpose, well-characterized heat transfer experiments have been performed in uniformly heated, single, circular, vertical channels ranging from 0.64 to 1.70 mm in diameter and using R-134a, R-22 and R-245fa as working fluids. Furthermore, flow visualization tests have been carried out to clarify the relation between the two-phase flow behavior and the boiling heat transfer characteristics. Single-phase flow experiments with subcooled liquid refrigerant have confirmed that conventional macroscale theory on single-phase flow and heat transfer is valid for circular channels as small as 640μm in diameter. Through high-speed flow boiling visualization of R-134a under non adiabatic conditions seven flow patterns have been observed: isolated bubbly flow, confined bubbly flow, slug flow, churn flow, slug-annular flow, annular flow, and mist flow. Two-phase flow pattern observations are presented in the form of flow pattern maps. Annular-type flow patterns are dominant for vapor qualities above 0.2. Onset of nucleate boiling and subcooled flow boiling heat transfer of R-134a has been investigated. The wall superheat needed to initiate boiling was found as large as 18 ºC. The experimental heat transfer coefficients have been compared to predictions from subcooled flow boiling correlationsav ailable in the literature showing poor agreement. Saturated flow boiling heat transfer experiments have been performed with the 640 μm diameter test section. The heat transfer coefficient has been found to increase with heat flux and system pressure and not to change with vapor quality or mass flux when the quality is less than ∼0.5. For vapor qualities above this value, the heat transfer coefficient decreases with vapor quality. This deterioration of the heat transfer coefficient is believed to be caused by the occurrence of intermittent dryout in this vapor quality range. The experimental database, consisting of 1027 data points, has been compared against predictions from correlations available in the literature. The best results are obtained with the correlations by Liu and Winterton (1991) and by Bertsch et al. (2009). However, better design tools to correctly predict the flow boiling heat transfer coefficient in small geometries need to be developed. Dryout incipience and critical heat flux (CHF) have been investigated in detail. CHF data is compared to existing macro and microscale correlations. The comparison shows best agreement with the classical Katto and Ohno (1984) correlation, developed for conventional large tubes. / QC 20101101
108

Assessment of Energy Recovery Technology in China : Mechanical ventilation system with energy recovery

Piippo, Kaj January 2008 (has links)
<!-- --> In the wake of the economic growth of the Chinese market the past couple of decades, the energy consumption has surged. One of the biggest consequences of the increased energy consumption is a massive increase in CO2 emission. In fact, China has overtaken the U.S. as the biggest emitter of CO2. In light of this energy-saving technology gets more important to implement. District heating is one of the solutions used with success in parts of China where heating is required. In this paper, an energy recovery technology has been examined for two climate zones in China namely a mechanical ventilation system using a flat-plate counter-flow heat exchanger. Beijing is located in a cold zone while Hong Kong is located in a zone with hot summers and mild winters. Cooling load calculations were conducted manually using the RTS - method developed by ASHRAE and heating load calculations were conducted for Beijing using Swedish guidelines stated in BBR. Further, the energy recovery unit (VM1) that was provided by Systemair AB was tested using a rig where different outdoor conditions were simulated. This data was then used to evaluate the potential for energy recovery in a model apartment located in the two zones. As expected, significant differences were obtained when comparing the performance for the two locations. / Redan avklarad
109

Simulation of Residual Stresses in Castings

Lora, Ruben, Namjoshi, Jayesh January 2008 (has links)
This work presents a study and implementation of the simulation of residual stresses in castings. The objects of study are a cast iron truck Hub part (provided by the company Volvo 3P) and an optimized version of the Hub resulting from the application of a topology optimization process. The models are solved through an uncoupled thermo-mechanical solidification analysis, performed both in the FE commercial software Abaqus and the FD commercial software Magmasoft and the results are compared. First, a thermal analysis is carried out where the casting is cooled down from a super-heated temperature to room temperature. The thermal history obtained, is then used as an external force to calculate the residual stresses by means of a quasi-static mechanical analysis, using a J2-plasticity model. The simulation procedures are explained through a simplified model of the Hub and then applied to the geometries of interest. A results comparison between the original Hub and its optimized version is also presented. The theoretical base is given in this work as well as detailed implementation procedures. The results shows that the part subjected to the topology optimization process develop less residual stresses than its original version.
110

Simulation of Residual Stresses in Castings

Lora, Ruben, Namjoshi, Jayesh January 2008 (has links)
<p>This work presents a study and implementation of the simulation of residual stresses in castings. The objects of study are a cast iron truck Hub part (provided by the company Volvo 3P) and an optimized version of the Hub resulting from the application of a topology optimization process. The models are solved through an uncoupled thermo-mechanical solidification analysis, performed both in the FE commercial software Abaqus and the FD commercial software Magmasoft and the results are compared. First, a thermal analysis is carried out where the casting is cooled down from a super-heated temperature to room temperature. The thermal history obtained, is then used as an external force to calculate the residual stresses by means of a quasi-static mechanical analysis, using a J2-plasticity model. The simulation procedures are explained through a simplified model of the Hub and then applied to the geometries of interest. A results comparison between the original Hub and its optimized version is also presented. The theoretical base is given in this work as well as detailed implementation procedures. The results shows that the part subjected to the topology optimization process develop less residual stresses than its original version.</p>

Page generated in 0.2972 seconds