• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 4
  • 1
  • Tagged with
  • 48
  • 48
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Importance of Electric Motor Thermal Management and the Role of Polymer Composites in Axial Cooling

Rhebergen, Cody 11 1900 (has links)
The following research investigates the effect that axial cooling channels will have on the performance of the thermal management system of a hypothetical switched reluctance motor. A baseline motor with no axial cooling will be compared to an identical motor with the innovative cooling design implemented. This will allow for a direct comparison of the two designs, with a quantifiable performance increase determined through thermal simulations. The ability of a polymer composite to transfer heat to the axial cooling channel is also explored. A detailed material selection process is discussed with the result being an epoxy polymer composite. The material development of a thermally enhanced polymer composite is then investigated to achieve a maximum thermal conductivity material that can exist within the stator slot to achieve enhanced thermal energy transfer. / Thesis / Master of Applied Science (MASc) / The desire to increase the power density of electric machines is becoming an increasingly popular challenge, especially in the automotive industry. With the advent of electrified powertrains as an alternative solution to conventional internal combustion powered vehicles, the topic of increasing electric motor performance is becoming very attractive area of research. An important aspect of electric motor performance is the way in which the generated thermal energy is managed. Through material development and innovative motor design, there exists the opportunity to cool electric motors through cooling paths flowing axially through the stator. This ‘axial cooling’ design has the opportunity to greatly increase motor cooling by removing thermal energy directly from its main source, the motor windings. The following research is aimed at the thermal design of the axial cooling and the role in which thermally conductive polymer composites play in order to enhance motor cooling.
12

A Thermal Analysis of Direct Driven Hydraulics

Minav, Tatiana, Papini, Luca, Pietola, Matti 02 May 2016 (has links) (PDF)
This paper focuses on thermal analysis of a direct driven hydraulic setup (DDH). DDH combines the benefits of electric with hydraulic technology in compact package with high power density, high performance and good controllability. DDH enables for reduction of parasitic losses for better fuel efficiency and lower operating costs. This one-piece housing design delivers system simplicity and lowers both installation and maintenance costs. Advantages of the presented architecture are the reduced hydraulic tubing and the amount of potential leakage points. The prediction of the thermal behavior and its management represents an open challenge for the system as temperature is a determinant parameter in terms of performance, lifespan and safety. Therefore, the electro-hydraulic model of a DDH involving a variable motor speed, fixed-displacement internal gear pump/motors was developed at system level for thermal analysis. In addition, a generic model was proposed for the electric machine, energy losses dependent on velocity, torque and temperature was validated by measurements under various operative conditions. Results of model investigation predict ricing of temperature during lifting cycle, and flattened during lowering in pimp/motor. Conclusions are drawn concerning the DDH thermal behavior.
13

Heat transfer investigations in a modern diesel engine

Finol Parra, Carlos January 2008 (has links)
An experimental investigation has been undertaken to study operating temperatures and heat fluxes in the cylinder walls and cylinder head of a modern diesel engine. Temperatures were measured under a wide range of speed and torque at more than one hundred locations in the block and cylinder head of the engine employing conventional thermocouples arranged to obtain one-dimensional metal thermal gradients and subsequently deduce the corresponding heat fluxes and surface temperatures. Results observed in the cylinder bores revealed that in addition to heat transferred by convection and radiation from combustion gases, the temperature and heat flux distributions are considerably affected by heat conduction from piston rings and skirt through the oil film, and by frictional heat generated at these components. The heat fluxes and surface temperatures obtained in the cylinder head combined with gas pressure measurements were used to evaluate existing formulae to predict heat transfer coefficients from combustion gases to the chamber walls. The evaluation confirmed the significant variation previously observed between the various methods. As a consequence, a modified correlation has been proposed to estimate the gas-side heat transfer coefficient. This new correlation is considered to be an improved tool for estimating the heat transfer coefficients from combustion gases in modern diesel engines. Additionally, the results observed in the cylinder bores were used to develop a simple model from first principles to estimate the heat transferred from piston rings and skirt to the cylinder wall.
14

Systematic analysis of the advantages of stationary shoulder friction stir welding in joining high strength aluminium alloy AA7050-T7651

Wu, Hao January 2017 (has links)
Stationary (static) shoulder friction stir welding (SSFSW) is a variant of conventional friction stir welding (FSW) that was originally invented to improve the quality of welds produced with titanium alloys. Its predominant advantage is a reduction of the severe through thickness temperature gradients seen in conventional FSW, when welding low thermal conductivity alloy. However, SSFSW has rarely been utilised as a method to weld aluminium alloys because it is generally thought that in conventional FSW the rotating shoulder plays an essential role in the heat generation and, due to the high thermal conductivity of aluminium alloys, a rotating shoulder is beneficial for the welding process. In the work presented, the advantages of SSFSW have been examined when welding a typical high strength aluminium alloy AA7050-T7651. The process window for each approach has first been determined, and the optimum welding conditions were systematically evaluated, using power-rotation rate curves. Direct comparison of the two processes was subsequently carried out under these optimum conditions. It has been demonstrated that SSFSW can dramatically improve the quality of a weld's surface finish. Under optimum conditions it has also been shown that SSFSW was able to weld with approximately a 30% lower heat input than FSW and the stationary shoulder led to a narrower heat affected zone (HAZ). As a result, the through thickness properties of SSFSW were much better and more homogeneous than that for FSW, in terms of grain sizes, hardness and cross-weld mechanical properties. Uniaxial tensile tests proved that the average tensile strength of SSFSW samples was around 500 MPa, which was about 100 MPa larger than that of the FSW sample. Also, it was shown that during tensile testing the deformation zones, which correspond to minima in the hardness distribution of SSFSW welds, were about half the size of those found in FSW welds under the same traverse speed. The mechanisms that give rise to these advantages have been investigated systematically, focusing on directly comparing the SSFSW and FSW processes, and are discussed aided by finite element modelling (FEM) of the heat distribution in welds produced by each process and microstructural investigations.
15

Dimensional analysis based CFD modelling for power transformers

Zhang, Xiang January 2017 (has links)
Reliable thermal modelling approaches are crucial to transformer thermal design and operation. The highest temperature in the winding, usually referred to as the hot-spot temperature, is of the greatest interest because the insulation paper at the hot-spot undergoes the severest thermal ageing, and determines the life expectancy of the transformer insulation. Therefore, the primary objective of transformer thermal design is to control the hot-spot temperature rise over the ambient temperature within certain limit. For liquid-immersed power transformers, the hot-spot temperature rise over the ambient temperature is controlled by the winding geometry, power loss distribution, liquid flow rate and liquid properties. In order to obtain universally applicable thermal modelling results, dimensional analysis is adopted in this PhD thesis to guide computational fluid dynamics (CFD) simulations for disc-type transformer windings in steady state and their experimental verification. The modelling work is split into two parts on oil forced and directed (OD) cooling modes and oil natural (ON) cooling modes. COMSOL software is used for the CFD simulation work For OD cooling modes, volumetric oil flow proportion in each horizontal cooling duct (Pfi) and pressure drop coefficient over the winding (Cpd) are found mainly controlled by the Reynolds number at the winding pass inlet (Re) and the ratio of horizontal duct height to vertical duct width. The correlations for Pfi and Cpd with the dimensionless controlling parameters are derived from CFD parametric sweeps and verified by experimental tests. The effects of different liquid types on the flow distribution and pressure drop are investigated using the correlations derived. Reverse flows at the bottom part of winding passes are shown by both CFD simulations and experimental measurements. The hot-spot factor, H, is interpreted as a dimensionless temperature at the hot-spot and the effects of operational conditions e.g. ambient temperature and loading level on H are analysed. For ON cooling modes, the flow is driven by buoyancy forces and hot-streak dynamics play a vital role in determining fluid flow and temperature distributions. The dimensionless liquid flow and temperature distributions and H are all found to be controlled by Re, Pr and Gr/Re2. An optimal design and operational regime in terms of obtaining the minimum H, is identified from CFD parametric sweeps, where the effects of buoyancy forces are balanced by the effects of inertial forces. Reverse flows are found at the top part of winding passes, opposite to the OD results. The total liquid flow rates of different liquids for the same winding geometry with the same power loss distribution in an ON cooling mode are determined and with these determined total liquid flow rates, the effects of different liquids on fluid flow and temperature distributions are investigated by CFD simulations. The CFD modelling work on disc-type transformer windings in steady state present in this PhD thesis is based on the dimensional analyses on the fluid flow and heat transfer in the windings. Therefore, the results obtained are universally applicable and of the simplest form as well. In addition, the dimensional analyses have provided insight into how the flow and temperature distribution patterns are controlled by the dimensionless controlling parameters, regardless of the transformer operational conditions and the coolant liquid types used.
16

Experimental and computational study to improve energy efficiency of frozen food retail stores

Mylona, Zoi January 2017 (has links)
Trends such as online shopping, fast pace of lifestyle and wellness issues are key drivers for consumers' preferences of shopping activities and product selection. There is evidence that food retail has shifted towards smaller in size stores and ready meals or food products which require less time for cooking. In fact, the frozen food market has increased recently and is projected to rise by 27% by 2020. This study focuses on energy efficiency of small size frozen food supermarkets. The investigation started with in-situ monitoring of energy use and environmental conditions in two frozen food stores with different HVAC but same refrigeration systems and store operation schedules. A dynamic thermal model of frozen food stores was developed using EnergyPlus and validated using the monitored data. The model takes into account interlinked heat exchanges between building, HVAC and refrigeration systems and was used to investigate energy efficiency improvements. Two HVAC systems were examined; coupling heating, air-conditioning and ventilation (coupled system) and separating heating and air-conditioning from ventilation (decoupled system). A number of refrigeration systems (remote, centralised, cascade, transcritical CO2 booster) and working fluids were investigated. Analysis of the monitored data has shown that energy use of frozen supermarkets is at the upper range of published supermarkets energy use benchmarks (1085 kWh/m2/annum). It was also shown that sales area temperature is highly affected by HVAC controls, refrigeration equipment and transient customers' pattern. The computational study has identified energy performance of sub-systems and their interactions. Results indicate that 61% of total energy use is due to the refrigeration system while HVAC and lighting are the next most energy intensive systems. Apart from lighting upgrade to LED which offers high energy savings (23%), energy efficiency can be improved for both coupled and decoupled HVAC systems by incorporating night ventilative cooling and operating remote LT cabinets with lower ambient temperature. Night ventilative cooling can lead to reduction of 3.6% in total energy use. Centralised refrigeration systems change the heating/cooling balance and can reduce the total energy use by up to 20% for a CO2 centralised system. The results of this research project are a contribution towards better understanding of energy use in food dominant supermarkets and their energy savings potential.
17

Laser Crystallisation of Silicon for Photovoltaic Applications using Copper Vapour Lasers

Boreland, Matt, School of Electrical Engineering, UNSW January 1999 (has links)
Thin film silicon on low temperature glass substrates is currently seen as the best path toreduce the $/W cost of photovoltaic (PV) modules. However, producing thin film polysilicon, on glass, is an ongoing research challenge. Laser crystallisation of a-Si is one of the possible methods. Typically excimer (XMR) lasers are used for laser crystallisation. This thesis introduces the copper vapour laser (CVL) as a viable alternative for thin film photovoltaic applications. The CVL, like the XMR, is a high powered, pulsed laser. However, the CVL has higher pulse rates (4-20kHz), better beam quality and a visible wavelength output (578 & 511nm). Preliminary experiments, using 600K-heated silicon-on-quartz samples, confirmed that CVL crystallisation can produce area weighted average grain size of 0.1-0.15??m, which is comparable to results reported for XMR??? s. Importantly, the CVL results used thicker films (1??m), which is more applicable to thin photovoltaic devices that need 1-10??m of silicon to be viable. The CVL??? s longer wavelength and therefore longer penetration depth (1/alpha) are proffered as the main reason for this result. Extensive laser-thermal modelling highlighted further opportunities specific to CVL crystallisation. Through-the-glass doublesided irradiation was shown in simulations to reduce thermal gradients, which would enhance crystal growth. The simulations also produced deeper melts at lower surface temperatures, reducing the thermal stress on the sample. Subsequent experiments, using silicon-on-glass, confirmed the benefit of through-the-glass doublesided irradiation by maintaining grain sizes without the usual need for substrate heating. Furthermore, Raman analysis showed that doublesided crystallisation achieved full depth crystallisation, unlike single side irradiation which produced partial crystallisation. A new mode of crystallisation, stepwise crystallisation, was also postulated whereby a series of CVL pulses could be used to incrementally increase the crystallisation depth into the silicon. Simulations confirmed the theoretical basis of the concept, with HeNe Raman spectroscopy and analysis of surface grain sizes providing indirect experimental support. The CVL??? s ability to crystallise thicker films more directly applicable to photovoltaic devices secures its viability as an alternative laser for photovoltaic applications. The through-the-glass doublesided irradiation and the stepwise crystallisation provide additional potential for increased process flexibility over XMR???s.
18

Heat Transfer Modelling and Thermal Imaging Experiments in Laser Transmission Welding of Thermoplastics

Mayboudi, LAYLA S. 09 October 2008 (has links)
This thesis presents a comprehensive study on the thermal modelling aspects of laser transmission welding of thermoplastics (LTW), a technology for joining of plastic parts. In the LTW technique, a laser beam passes through the laser-transmitting part and is absorbed within a thin layer in the laser-absorbing part. The heat generated at the interface of the two parts melts a thin layer of the plastic and, with applying appropriate clamping pressure, joining occurs. Transient thermal models for the LTW process were developed and solved by the finite element method (FEM). Input to the models included temperature-dependent thermo-physical properties that were adopted from well-known sources, material suppliers, or obtained by conducting experiments. In addition, experimental and theoretical studies were conducted to estimate the optical properties of the materials such as the absorption coefficient of the laser-absorbing part and light scattering by the laser-transmitting part. Lap-joint geometry was modelled for semi crystalline (polyamide - PA6) and amorphous (polycarbonate - PC) materials. The thermal models addressed the heating and cooling stages in a laser welding process with a stationary and moving laser beam. An automated ANSYS® script and MATLAB® codes made it possible to input a three-dimensional (3D), time-varying volumetric heat-generation term to model the absorption of a moving diode-laser beam. The result was a 3D time-transient, model of the laser transmission welding process implemented in the ANSYS® FEM environment. In the thermal imaging experiments, a stationary or moving laser beam was located in the proximity of the side surface of the two parts being joined in a lap-joint configuration. The side surface was then observed by the thermal imaging camera. For the case of the stationary beam, the laser was activated for 10 s while operating at a low power setting. For the case of the moving beam, the beam was translated parallel to the surface observed by the camera. The temperature distribution of a lap joint geometry exposed to a stationary and moving diode-laser beam, obtained from 3D thermal modelling was then compared with the thermal imaging observations. The predicted temperature distribution on the surface of the laser-absorbing part observed by the thermal camera agreed within 3C with that of the experimental results. Predicted temperatures on the laser-transmitting part surface were generally higher by 15C to 20C. This was attributed to absorption coefficient being set too high in the model for this part. Thermal imaging of the soot-coated laser-transmitting part surface indicated that significantly more scattering and less absorption takes place in this part than originally assumed. For the moving laser beam, good model match with the experiments (peak temperatures predicted within 1C) was obtained for some of the process conditions modelled for PA6 parts. In addition, a novel methodology was developed to extract the scattered laser beam power distribution from the thermal imaging observations of the moving laser beam. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2008-10-08 10:39:30.952
19

Advanced spreadsheet based methodology for the dynamic thermal modelling of buildings

Demetriou, Louis January 2006 (has links)
Thermal analysis of buildings was carried out using simplified design tools, prior to the widespread use of computers. Since the early 1980's, the rapid growth of computational power has lead to the introduction of many building dynamic thermal simulation software programs. The accurate performance of many of these programs has lead to the view that manual calculation methods should only be used as indicative design tools. The CIBSE admittance method is based on the fundamentals of building heat transfer, its calculations procedures being simplified for use on hand held calculators. Manual calculation methods must be developed for use on more powerful calculators, if greater accuracy is required. Such calculators are available in the form of computer spreadsheet programs. The computational power of the computer spreadsheet program, combined with suitable mathematical thermal modelling techniques, has thus far, remained unexploited. This thesis describes the development of a powerful manual thermal design method, for application on a computer spreadsheet program. All the modes of building heat transfer are accurately modelled. Free-running or plant-controlled spaces can be simulated. In the case of a single zone, the accuracy of the new manual dynamic thermal model is comparable with commercially available software programs. The level of mathematical modelling complexity is limited only by computer power and user ability. The Iterative Frequency Domain Method (IFDM) and the Adiabatic Iterative Frequency Domain Method (AIFDM) are alternative mathematical simulation techniques developed to form the core of the Thermal Analysis Design Method. In the IFDM and AIFDM, the frequency domain and numerical iteration techniques have been integrated to produce a thermal simulation method that can model all non-linear heat transfer processes. A more accurate formulation of sol-air temperature, a window sol-air temperature and an accurate reduced internal long-wave radiant exchange model is a sample of further innovations in the thesis. Many of the developments described in the thesis, although designed for the computer spreadsheet environment, may also be employed to enhance the performance of some of the current dynamic thermal models of buildings.
20

Laser Crystallisation of Silicon for Photovoltaic Applications using Copper Vapour Lasers

Boreland, Matt, School of Electrical Engineering, UNSW January 1999 (has links)
Thin film silicon on low temperature glass substrates is currently seen as the best path toreduce the $/W cost of photovoltaic (PV) modules. However, producing thin film polysilicon, on glass, is an ongoing research challenge. Laser crystallisation of a-Si is one of the possible methods. Typically excimer (XMR) lasers are used for laser crystallisation. This thesis introduces the copper vapour laser (CVL) as a viable alternative for thin film photovoltaic applications. The CVL, like the XMR, is a high powered, pulsed laser. However, the CVL has higher pulse rates (4-20kHz), better beam quality and a visible wavelength output (578 & 511nm). Preliminary experiments, using 600K-heated silicon-on-quartz samples, confirmed that CVL crystallisation can produce area weighted average grain size of 0.1-0.15??m, which is comparable to results reported for XMR??? s. Importantly, the CVL results used thicker films (1??m), which is more applicable to thin photovoltaic devices that need 1-10??m of silicon to be viable. The CVL??? s longer wavelength and therefore longer penetration depth (1/alpha) are proffered as the main reason for this result. Extensive laser-thermal modelling highlighted further opportunities specific to CVL crystallisation. Through-the-glass doublesided irradiation was shown in simulations to reduce thermal gradients, which would enhance crystal growth. The simulations also produced deeper melts at lower surface temperatures, reducing the thermal stress on the sample. Subsequent experiments, using silicon-on-glass, confirmed the benefit of through-the-glass doublesided irradiation by maintaining grain sizes without the usual need for substrate heating. Furthermore, Raman analysis showed that doublesided crystallisation achieved full depth crystallisation, unlike single side irradiation which produced partial crystallisation. A new mode of crystallisation, stepwise crystallisation, was also postulated whereby a series of CVL pulses could be used to incrementally increase the crystallisation depth into the silicon. Simulations confirmed the theoretical basis of the concept, with HeNe Raman spectroscopy and analysis of surface grain sizes providing indirect experimental support. The CVL??? s ability to crystallise thicker films more directly applicable to photovoltaic devices secures its viability as an alternative laser for photovoltaic applications. The through-the-glass doublesided irradiation and the stepwise crystallisation provide additional potential for increased process flexibility over XMR???s.

Page generated in 0.185 seconds