• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 23
  • 7
  • 6
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 138
  • 138
  • 77
  • 68
  • 28
  • 26
  • 25
  • 21
  • 21
  • 21
  • 20
  • 19
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Modeling Behaviour of Damaged Turbine Blades for Engine Health Diagnostics and Prognostics

Van Dyke, Jason 12 October 2011 (has links)
The reliability of modern gas turbine engines is largely due to careful damage tolerant design a method of structural design based on the assumption that flaws (cracks) exist in any structure and will continue to grow with usage. With proper monitoring, largely in the form of periodic inspections at conservative intervals reliability and safety is maintained. These methods while reliable can lead to the early retirement of some components and unforeseen failure if design assumptions fail to reflect reality. With improvements to sensor and computing technology there is a growing interest in a system that could continuously monitor the health of structural aircraft as well as forecast future damage accumulation in real-time. Through the use of two-dimensional and three-dimensional numerical modeling the initial goals and findings for this continued work include: (a) establishing measurable parameters directly linked to the health of the blade and (b) the feasibility of detecting accumulated damage to the structural material and thermal barrier coating as well as the onset of damage causing structural failure.
122

Development of Cold Gas Dynamic Spray Nozzle and Comparison of Oxidation Performance of Bond Coats for Aerospace Thermal Barrier Coatings at Temperatures of 1000°C and 1100°C

Roy, Jean-Michel L. 08 February 2012 (has links)
The purpose of this research work was to develop a nozzle capable of depositing dense CoNiCrAlY coatings via cold gas dynamic spray (CGDS) as well as compare the oxidation performance of bond coats manufactured by CGDS, high-velocity oxy-fuel (HVOF) and air plasma spray (APS) at temperatures of 1000°C and 1100°C. The work was divided in two sections, the design and manufacturing of a CGDS nozzle with an optimal profile for the deposition of CoNiCrAlY powders and the comparison of the oxidation performance of CoNiCrAlY bond coats. Throughout this work, it was shown that the quality of coatings deposited via CGDS can be increased by the use of a nozzle of optimal profile and that early formation of protective α-Al2O3 due to an oxidation temperature of 1100°C as opposed to 1000°C is beneficial to the overall oxidation performance of CoNiCrAlY coatings.
123

Πρόβλεψη μη γραμμικής συμπεριφοράς και διάδοσης ρωγμής σε συνθήκες θερμομηχανικής κόπωσης με τη μέθοδο των συνοριακών στοιχείων

Κέππας, Λουκάς 16 June 2011 (has links)
Τα δομικά στοιχεία των μηχανολογικών κατασκευών υπόκεινται σε επαναλαμβανόμενες κυκλικές καταπονήσεις, από τις οποίες δημιουργούνται και διαδίδονται ρωγμές. Οι καταπονήσεις αυτές, οι οποίες προκαλούν κόπωση στις κατασκευές, μπορεί να είναι είτε καθαρά μηχανικές είτε θερμικές ή να προκύπτουν σα συνδυασμός θερμικής και μηχανικής φόρτισης. Τυπικές περιπτώσεις θερμικών και θερμομηχανικών φορτίσεων εμφανίζονται σε κατασκευές, όπως σωλήνες κυκλωμάτων ψύξης, πιεστικά δοχεία, συνιστώσες ηλεκτρικών κυκλωμάτων, θάλαμοι μηχανών εσωτερικής καύσης και πτερύγια στροβιλοκινητήρων. Η κυκλική μεταβολή του θερμικού φορτίου στις προαναφερθείσες περιπτώσεις, συνιστά συνθήκες θερμικής κόπωσης. Επίσης, λόγω της σχετικά υψηλής συχνότητας του φορτίου η θερμοκρασία παρουσιάζει έντονη μεταβολή στο χώρο και στο χρόνο. Ο προσδιορισμός της διάρκειας ζωής ενός δομικού στοιχείου κατά τη φάση του σχεδιασμού μπορεί να γίνει με τη βοήθεια πειραματικών διαδικασιών. Τα πειράματα όμως κόπωσης είναι δαπανηρά και χρονοβόρα και προφανώς απαιτούνται περισσότερες από μια πειραματικές δοκιμές. Οπότε, είναι εύλογο να υπάρχουν υπολογιστικά εργαλεία που να δίνουν τη δυνατότητα στο μηχανικό να εκτιμήσει την διάρκεια ζωής ή τη σοβαρότητα της βλάβης ενός εξαρτήματος. Τα περισσότερα υπολογιστικά μοντέλα αναφέρονται σε καθαρά μηχανικές καταπονήσεις. Έτσι υπάρχει πρόσφορο έδαφος για την ανάπτυξη υπολογιστικών εργαλείων για την ανάλυση προβλημάτων θερμικής και θερμομηχανικής κόπωσης. Τέτοιου είδους εργαλεία θα πρέπει να λαμβάνουν υπόψη το κλείσιμο των ρωγμών, που συμβαίνει λόγω των θερμικών παραμορφώσεων, διότι είναι δυνατόν να επηρεάζεται τοπικά το θερμοκρασιακό πεδίο. Επομένως, χρειάζεται επαναληπτική διαδικασία για τον προσδιορισμό του θερμικού και τασικού πεδίου που αλληλεπιδρούν. Είναι προφανές ότι η ανάλυση της θερμικής κόπωσης εξελίσσεται σε συνθέτη διαδικασία, που θα πρέπει να συμπεριλαμβάνει τον υπολογισμό της κατανομής της θερμοκρασίας, την τοπική επίδραση του άκρου της ρωγμής στο τασικό πεδίο καθώς και την επαφή των επιφανειών της ρωγμής. Η μέθοδος των συνοριακών στοιχείων είναι ικανή να αντιμετωπίζει τέτοιου είδους τοπικές επιδράσεις. Η παρούσα διατριβή επικεντρώνεται στην ανάπτυξη υπολογιστικού εργαλείου βασισμένου στα συνοριακά στοιχεία, για την πρόβλεψη της διάδοσης ρωγμών και την εκτίμηση της διάρκειας ζωής, εξαρτημάτων υπό θερμική και θερμομηχανική κόπωση. Έμφαση δίνεται σε περιπτώσεις που το θερμικό φορτίο προκαλεί κλείσιμο της ρωγμής και σε περιπτώσεις διεπιφανειακών ρωγμών, όπου το θερμοκρασιακό πεδίο επηρεάζεται από την θερμική αντίσταση ανάμεσα στις επιφάνειες της ρωγμής. Στο πρώτο κεφάλαιο γίνεται βιβλιογραφική ανασκόπηση σε εργασίες που εστιάζουν σε φαινόμενα κόπωσης και διάδοσης ρωγμών, καθώς και στην ανάπτυξη υπολογιστικών μοντέλων για την πρόβλεψη της διάδοσης ρωγμών. Επιπλέον, προσδιορίζεται λεπτομερώς το αντικείμενο της παρούσας διατριβής και εξηγείται η συνεισφορά της και τα καινοτόμα σημεία της. Στο δεύτερο κεφάλαιο περιγράφεται η ιδιόμορφη συμπεριφορά του άκρου της ρωγμής, δίνονται οι διατυπώσεις των μεγεθών θραύσης που χρησιμοποιούνται στην ανάλυση της κόπωσης και αναφέρονται τρόποι με τους οποίους μελετάται η διάδοση ρωγμών. Στο τρίτο κεφάλαιο περιγράφονται λεπτομερώς οι ολοκληρωτικές συνοριακές διατυπώσεις για την επίλυση προβλημάτων θερμοελαστικότητας. Στο τέταρτο κεφάλαιο περιγράφονται οι υπολογιστικές διαδικασίες που ακολουθούνται στην παρούσα εργασία για τον προσδιορισμό του πεδίου θερμοκρασιών και μετατοπίσεων, καθώς και ο τρόπος που προσομοιώνεται η διάδοση ρωγμής. Στο πέμπτο κεφάλαιο παρατίθενται τα αποτελέσματα που προέκυψαν από τις αναλύσεις για διάφορες περιπτώσεις, ενώ στο έκτο κεφάλαιο εξάγονται συμπεράσματα και διατυπώνονται προτάσεις για μελλοντική έρευνα. / The prediction of fatigue life is essential for the integrity and reliability of a structure when designing engineering components that undergo cyclic loading. In most cases, the mechanical cyclic loads are taken into account in order to evaluate the life and damage tolerance of structures with existing cracks. However, there exists a category of structures that experience severe thermal cycling that acts alongside the mechanical loads. Such structures include cooling system pipes, pressure vessels, pistons and combustion chambers of internal combustion engines, gas turbine blades and components of electrical circuits. Interfacial crack growth is of paramount importance when designing components that are protected by thermal barrier coatings in order to increase their endurance and efficiency. These types of structures are exposed to very intense thermo-mechanical cycling, which gradually causes delamination and eventually leads to spallation of the coating Numerical simulations, via the finite element method, are a common trend, when analysing the endurance of coated components. However, important aspects such as the heat exchange between the contacting faces and friction are not taken into account in fracture assessments of these components. The boundary element method is very attractive for crack-growth analyses because only the boundary is meshed, rather than the whole domain of the problem. In the present thesis, the boundary integral equations of uncoupled, time-dependent thermo-elasticity are employed to account for the time-varying nature of the thermal load. Our study discusses the influence of crack closure on quasi-static, sub-critical crack extension in the presence of thermo-mechanical cyclic loading. Appropriate thermal and mechanical boundary conditions are imposed on the numerical model to account for the contact state. The validity of the code to compute the temperature distribution under thermal cycling is checked through analytical solutions. Afterwards, a pure mode-I and mixed mode fracture problems in homogeneous material are analysed and the results are compared to other boundary element solutions. The singularity resulting from tractions and heat flux around the crack tip is effectively captured by singular quarter-point elements, while the fracture magnitudes can be computed using appropriate traction formulas. In these problems, the fatigue life is evaluated in terms of load cycle when the crack closure is considered. The number of cycles required for an existing crack to grow a certain length can be empirically predicted using the Paris’ law. The crack extension angle is evaluated by means of the maximum circumferential stress. The results are discussed, clearly indicating the impact of crack closure on fatigue life evaluation. The main conclusion is that crack closure should be incorporated into the analysis whenever the contact effect is inevitable. Otherwise, the fatigue life may be underestimated, leading to a conservative design. Finally, the sub-domain boundary element procedure is applied to interfacial cracks where the crack closure is more pronounced. Specifically, a case of a thermal barrier coating system is investigated. The thermal resistance between the contacting crack faces is incorporated into the procedure and it is assumed to be dependent on the contact pressure. If crack closure due to thermal distortion takes place, then the displacement and traction field may affect the heat flux between the crack faces, and the thermal and mechanical parts of the problem will need to be solved repeatedly until thermo-mechanical convergence is achieved. The results suggest that there are significant effects on the behaviour of stably growing cracks and the evaluation of failure capacity, emanating from crack closure, the amount of thermal resistance and the phase angle between the mechanical and thermal loads.
124

Modeling Behaviour of Damaged Turbine Blades for Engine Health Diagnostics and Prognostics

Van Dyke, Jason January 2011 (has links)
The reliability of modern gas turbine engines is largely due to careful damage tolerant design a method of structural design based on the assumption that flaws (cracks) exist in any structure and will continue to grow with usage. With proper monitoring, largely in the form of periodic inspections at conservative intervals reliability and safety is maintained. These methods while reliable can lead to the early retirement of some components and unforeseen failure if design assumptions fail to reflect reality. With improvements to sensor and computing technology there is a growing interest in a system that could continuously monitor the health of structural aircraft as well as forecast future damage accumulation in real-time. Through the use of two-dimensional and three-dimensional numerical modeling the initial goals and findings for this continued work include: (a) establishing measurable parameters directly linked to the health of the blade and (b) the feasibility of detecting accumulated damage to the structural material and thermal barrier coating as well as the onset of damage causing structural failure.
125

Development of Cold Gas Dynamic Spray Nozzle and Comparison of Oxidation Performance of Bond Coats for Aerospace Thermal Barrier Coatings at Temperatures of 1000°C and 1100°C

Roy, Jean-Michel L. January 2012 (has links)
The purpose of this research work was to develop a nozzle capable of depositing dense CoNiCrAlY coatings via cold gas dynamic spray (CGDS) as well as compare the oxidation performance of bond coats manufactured by CGDS, high-velocity oxy-fuel (HVOF) and air plasma spray (APS) at temperatures of 1000°C and 1100°C. The work was divided in two sections, the design and manufacturing of a CGDS nozzle with an optimal profile for the deposition of CoNiCrAlY powders and the comparison of the oxidation performance of CoNiCrAlY bond coats. Throughout this work, it was shown that the quality of coatings deposited via CGDS can be increased by the use of a nozzle of optimal profile and that early formation of protective α-Al2O3 due to an oxidation temperature of 1100°C as opposed to 1000°C is beneficial to the overall oxidation performance of CoNiCrAlY coatings.
126

Návrh optimálních parametrů vícevrstvého keramického ochranného povlaku pro vysokoteplotní aplikace / Design of optimal parameters of multilayer ceramic protective coating for high temperature applications

Dohnalík, Petr January 2017 (has links)
The main objective of this work was to design a suitable composition of a protective coatings, made of several different layers of specific materials - with respect to residual stress, induced due to a mismatch in thermal expansion coefficients of each layer. Protective coating in this work means both the thermal and the environmental barrier. These coatings protect components against high temperatures and harsh environment. In this work, necessary theoretical background in the field of the thermal and environmental barrier coatings is introduced. There are mentioned some basic design approaches, commonly used materials and processing methods for the coating structure. The literature review gives an overview of modeling of such coated structures, in particular it is devoted to the thermal barrier coatings deposited by air plasma spray process. The next chapter closely describes classical laminate theory used for calculation of residual stresses in the coating. One of the assumptions of this theory is homogenous temperature field through the coating’s thickness. However, in this work was revealed a way to extend the classical lamination theory of such cases, in which the temperatures vary along the thickness of the coating. In the practical part, the analytical model was used for designing suitable properties of some coatings, which were consists of two, three and four layers. The calculations were performed both for constant temperature and for the temperature gradient. All results obtained from analytical approach were verified by numerical calculations.
127

Příprava a strukturní stabilita nanokrystalických tepelných bariér / Processing and Structural Stability of Nanocrystalline Thermal Barrier Coatings

Jech, David January 2018 (has links)
Complex thermal barrier coating systems are one the most efficient high-temperature surface treatments which open up practical applications in land-based turbines and air jet engines. In the case of most exposed rotor and stator jet engine components, the combination of thermal barrier coatings together with the inner cooling system made it possible to increase working temperature by several tens of degrees of Celsius. Nevertheless, it is very difficult to achieve any further increase in working temperature by using the conventional thermal barrier coatings based on the ZrO2-Y2O3 ceramic top coat and the MCrAlY metallic bond coat, which currently work at their material limits. The working temperature inside the combustion chamber of the jet engine is proportional to engine’s efficiency and inversely proportional to fuel consumption and production of undesirable CO2 emission. Therefore, a considerable effort has recently been devoted to research and development of new types of ceramic coatings that can withstand long term extreme working conditions. New design approaches of multi-layer composite thermal barrier coating systems can sustain the required trend of increasing working temperature of jet engines mainly because of possibility of optimization of high-temperature durability and long lifetime. The theoretical part of thesis provides a fundamental overview of thermal barrier coatings, their properties, deposition technologies and testing methods. The experimental part is focused on optimization of deposition parameters of conventional ZrO2-Y2O3 / MCrAlY thermal barrier coatings prepared by means of atmospheric plasma spraying. Furthermore, a novel multi-layer thermal barrier coating system based on ZrO2-Y2O3-Al2O3-SiO2 / ZrO2-Y2O3 / MCrAlY, which contains amorphous and/or nanocrystalline regions, is developed, tested and characterized as well. Structural stability, phase transformations and growth of the thermally grown oxide in both conventional and experimental systems after high-temperature isothermal oxidation, cyclic oxidation and burner-rig tests were evaluated by means light microscopy, scanning electron microscopy with energy-dispersive microanalysis and X-ray diffraction. In comparison with the conventional thermal barrier coatings, the novel multi-layered systems have lower thermal conductivity, slower thermally grown oxide kinetic, better structural stability, and generally higher lifetime in all high-temperature tests.
128

Optimalizace podmínek dvojitého přetavení elektronovým paprskem v procesu přípravy TBC povlaků / Optimizing the conditions of double electron beam remelting in the process of preparing TBC

Hroš, Michal January 2019 (has links)
Thermal barrier coatings (TBCs) are commonly used for thermal protection of components in modern gas turbine application and typically consisting of ceramic top coat and CoNiCrAlY bond coat (BC), both thermally sprayed. Nanostructured CoNiCrAlY bond coatings were deposited onto Ni-based alloy (Inconel 718) by both HVOF and CGDS spraying techniques. Subsequently the deposits were remelted by electron beam up to depth of about 100 m which resulted in removal of defects on the substrate to the bond coat interface. The primary objective of this thesis was to investigation of the influence of parameters used for EB remelting, including multiple remelting on the microstructural changes, phase modification and final state of the coatings. The amount of porosity in the coatings and surface roughness has been evaluated. Scanning electron microscopy and X-Ray diffraction were performed in order to characterize the phase modification before and after the applied treatment. The results indicated that multiple remelting process improved the coating properties in terms of porosity, smooth surface, strength and chemical homogeneity and at last but not least this study demonstrate that low-temperature processing of CoNiCrAlY bond coat represents an interesting and promising alternative for their manufacturing.
129

Struktura a vlastnosti tepelných bariér typu YSZ nanesených na krycí vrstvy CoNiCrAlY přetavené elektronovým paprskem / Microstructure and properties of YSZ thermal barier coatings deposited onto CoNiCrAlY bond coats remelted by electron beam

Slavíková, Barbora January 2019 (has links)
The master thesis is dealing with characterization of the structure and properties of the YSZ thermal barrier coating deposited by water hybrid plasma spray technology on the CoNiCrAlY bond coats modified by using electron beam and vacuum annealing. Deposition of the bond coats was performed via high velocity oxy-fuel technology and cold spray. In case of experimental evaluation, the microstructure and chemical composition of the ceramic top coat deposited with powder and suspension feedstock was analyzed. The same analysis procedure was used also for bond coats after electron beam remelting by using two sets of parameters. Furthermore, the changes in microstructure and chemical composition of the remelted and annealed bond coats was evaluated. Eventually, the micromechanical properties of the top coats and the bond coats were measured. The ceramic top coats deposited with powder feedstock exhibited the structure composed by splats, while the top coats deposited in form of suspension showed fine structure with columnar grains. The dendritic structure was observed on remelted bond coats. The annealing process had an influence on the structure in form of coarsened phases and the chemical composition was changed due to diffusion of the elements.
130

Microstructure and Thermal Conductivity of Liquid Feedstock Plasma Sprayed Thermal Barrier Coatings

Ganvir, Ashish January 2016 (has links)
Thermal barrier coating (TBC) systems are widely used on gas turbine components to provide thermal insulation and oxidation protection. TBCs, incombination with advanced cooling, can enable the gas turbine to operate at significantly higher temperatures even above the melting temperature of the metallic materials. There is a permanent need mainly of environmental reasons to increase the combustion turbine temperature, hence new TBC solutions are needed.By using a liquid feedstock in thermal spraying, new types of TBCs can be produced. Suspension plasma/flame or solution precursor plasma spraying are examples of techniques that can be utilized for liquid feedstock thermal spraying.This approach of using suspension and solution feedstock, which is an alternative to the conventional solid powder feed stock spraying, is gaining increasing research interest, since it has been shown to be capable of producing coatings with superior coating performance.The objective of this research work was to explore relationships between process parameters, coating microstructure, thermal diffusivity and thermal conductivity in liquid feedstock thermal sprayed TBCs. A further aim was to utilize this knowledge to produce a TBC with lower thermal diffusivity and lower thermal conductivity compared to state-of-the-art in industry today, i.e. solid feed stock plasma spraying. Different spraying techniques, suspension high velocity oxy fuel,solution precursor plasma and suspension plasma spraying (with axial and radialfeeding) were explored and compared with solid feedstock plasma spraying.A variety of microstructures, such as highly porous, vertically cracked and columnar, were obtained. It was shown that there are strong relationships between the microstructures and the thermal properties of the coatings.Specifically axial suspension plasma spraying was shown as a very promising technique to produce various microstructures as well as low thermal diffusivity and low thermal conductivity coatings.

Page generated in 0.0981 seconds