• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 23
  • 7
  • 6
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 138
  • 138
  • 77
  • 68
  • 28
  • 26
  • 25
  • 21
  • 21
  • 21
  • 20
  • 19
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Suspension plasma sprayed thermal barrier coatings for internal combustion engines / Suspensionsprutade termiska barriärbeläggningar för förbränningsmotorer

Uczak de Goes, Wellington January 2020 (has links)
The upward trend in internal combustion engine efficiency is likely driven by the depletion of fossil fuels. Since no replacement in sight can deliver energy comparable to the conventional oil, there is a need to use it more rationally and effectively. Thermal barrier coatings have been seen for a long time as a solutionto increase the thermal efficiency of gas turbine engines but suffer from the lackof strong applicability in internal combustion engines. This is due to the different restrictions when comparing the environment on the gas turbines and in internal combustion engines. To overcome this problem and, at the same time, expand the application field of thermal barrier coatings, more efforts need to be devoted.In this work, different top coat materials using various deposition techniques were evaluated and categorized in three different thermal barrier coating (TBC) architectures. The first was the lamellar yttria-stabilized zirconia (YSZ) top coat deposited by atmospheric plasma spray (APS), used as a reference sample. The second architecture was a columnar suspension plasma spray (SPS) TBC with YSZ and gadolinium zirconate (GZO) top coat. The SPS process can produce avariety of microstructures, and they were, for the first time, tested in an internal combustion engine. The third architecture was an SPS top coat, with an additional layer on the top, called a sealing layer of either metallic or ceramic material, both never investigated in a diesel engine application earlier. For the thermophysical properties investigation, a combination of laser flashanalysis (LFA) and modeling with object-oriented finite element (OOF) was employed to understand the properties in all the applications. The performance of the coatings was evaluated in two different ways, by thermal cyclic tests, basedon the TBCs behavior under cyclic thermal loads and by single-cylinder engine experiment. The characterization of the coatings was done by scanning electron microscope (SEM) before and after the thermal cyclic tests.The performance properties were correlated with coatings microstructure and thermophysical properties. It was shown that a columnar TBC produced by SPS had a superior engine efficiency in the single cylinder engine experiment.
82

Thickness Prediction of Deposited Thermal Barrier Coatings using Ray Tracing and Heat Transfer Methods

Dhulipalla, Anvesh 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Thermal barrier coatings (TBCs) have been extensively employed as thermal protection in hot sections of gas turbines in aerospace and power generation applications. However, the fabrication of TBCs still needs to improve for better coating quality, such as achieving coating thickness' uniformity. However, several previous studies on the coating thickness prediction and a systematic understanding of the thickness evolution during the deposition process are still missing. This study aims to develop high-fidelity computational models to predict the coating thickness on complex-shaped components. In this work, two types of models, i.e., ray-tracing based and heat transfer based, are developed. For the ray-tracing model, assuming a line-of-sight coating process and considering the shadow effect, validation studies of coating thickness predictions on different shapes, including plate, disc, cylinder, and three-pin components. For the heat transfer model, a heat source following the Gaussian distribution is applied. It has the analogy of the governing equations of the ray-tracing method, thus generating a temperature distribution similar to the ray intensity distribution in the ray-tracing method, with the advantages of high computational efficiency. Then, using a calibrated conversion process, the ray intensity or the temperature profile are converted to the corresponding coating thickness. After validation studies, both models are applied to simulate the coating thickness in a rotary turbine blade. The results show that the simulated validation cases are in good agreement with either the experimental, analytical, or modeling results in the literature. The turbine blade case shows the coating thickness distributions based on rotating speed and deposition time. In summary, the models can simulate the coating thickness in rotary complex-shaped parts, which can be used to design and optimize the coating deposition process.
83

Nízkocyklová únava niklové superslitiny IN713LC s TBC vrstvou za vysokých teplot / Low cycle fatigue of nickel superalloy IN713LC with TBC layer at high temperatures

Machala, Jan January 2013 (has links)
This thesis deals with the low cycle fatigue nickel-based superalloy IN713LC with applied TBC barrier at high temperature. The theoretical part is divided into four sections. The first one focuses on description of fatigue damage. The second one provides the basic characteristics of nickel-based superalloys. The third section describes the use of the surface layers - diffusion layers and thermal barriers and the fourth section deals with the influence of these layers on fatigue properties. Experimental part is focused on the evaluation of low cycle fatigue tests and on the explanation of the mechanisms of initiation and propagation of fatigue cracks. For the experimental part, fatigue samples were prepared by vacuum precision investment casting. TBC barrier was applied by atmospheric plasma spraying and consists of two sublayers - the lower metallic bond coating type CoNiCrAlY and top ceramic coating type YSZ. Low cycle fatigue tests were conducted under strain control at controlled temperature of 900 ° C. Fractographical analysis of fracture surfaces was carried out by using light and electron microscopy. Effect of applied barrier to fatigue life was determined - the parameters of Manson-Coffin and Basquin curve. A cyclic stress-strain curve was also obtained. The curves softening / hardening and number of transit cycles were determined. The obtained parameters and values from fatigue tests were compared with available data from fatigue tests of superalloy IN713LC without the layer, as applied AlSi type diffusion layer, at high temperatures. The initiation site on the fracture surfaces was determined within the fractographic evaluation and the influence of the layer on the initiation and propagation of fatigue cracks was discussed. A helpful tool was the assessment of longitudinal sections using scanning electron microscopy.
84

Application of Variation of Parameters to Solve Nonlinear Multimode Heat Transfer Problems

Moore, Travis J 01 October 2014 (has links) (PDF)
The objective of this work is to apply the method of variation of parameters to various direct and inverse nonlinear, multimode heat transfer problems. An overview of the general method of variation of parameters is presented and applied to a simple example problem. The method is then used to obtain solutions to three specific extended surface heat transfer problems: 1. a radiating annular fin, 2. convective and radiative exchange between the surface of a continuously moving strip and its surroundings, and 3. convection from a fin with temperature-dependent thermal conductivity and variable cross-sectional area. The results for each of these examples are compared to those obtained using other analytical and numerical methods. The method of variation of parameters is also applied to the more complex problem of combined conduction-radiation in a one-dimensional, planar, absorbing, emitting, non-gray medium with non-gray opaque boundaries. Unlike previous solutions to this problem, the solution presented here is exact. The model is verified by comparing the temperature profiles calculated from this work to those found using numerical methods for both gray and non-gray cases. The combined conduction-radiation model is then applied to determine the temperature profile in a ceramic thermal barrier coating designed to protect super alloy turbine blades from large and extended heat loads. Inverse methods are implemented in the development of a non-contact method of measuring the properties and temperatures within the thermal barrier coating. Numerical experiments are performed to assess the effectiveness of this measurement technique. The combined conduction-radiation model is also applied to determine the temperature profile along the fiber of an optical fiber thermometer. An optical fiber thermometer consists of an optical fiber whose sensing tip is coated with an opaque material which emits radiative energy along the fiber to a detector. Inverse methods are used to infer the tip temperature from spectral measurements made by the detector. Numerical experiments are conducted to assess the effectiveness of these methods. Experimental processes are presented in which a coating is applied to the end of an optical fiber and connected to an FTIR spectrometer. The system is calibrated and the inverse analysis is used to infer the tip temperature in various heat sources.
85

Evolution Of Microstructure And Residual Stress In Disc-shape Eb-pvd Thermal Barrier Coatings And Temperature Profile Of High Pressure Turbine Blade

Mukherjee, Sriparna 01 January 2011 (has links)
A detailed understanding of failure mechanisms in thermal barrier coatings (TBCs) can help develop reliable and durable TBCs for advanced gas turbine engines. One of the characteristics of failure in electron beam physical vapor deposited (EB-PVD) TBCs is the development of instability, named rumpling, at the interface between (Ni, Pt)Al bond coat and thermally grown oxide (TGO). In this study, thermal cycling at 1100°C with 1 hr dwell time was carried out on 25.4mm disc specimens of TBCs that consisted of EB-PVD coated ZrO2-7wt. %Y2O3, (Pt,Ni)Al bond coat, and CMSX-4 Ni-based superalloy. At specific fraction of lifetime, TBCs were examined by electron microscopy and photostimulated luminescence (PL). Changes in the average compressive residual stress of the TGO determined by PL and the magnitude of rumpling, determined by tortuosity from quantitative microstructural analyses, were examined with respect to the furnace thermal cyclic lifetime and microstructural evolution of TBCs. The combination of elastic strain energy within the TGO and interfacial energy at the interface between the TGO and the bond coat was defined as the TGO energy, and its variation with cyclic oxidation time was found to remain approximately constant ~135J/m2 during thermal cycling from 10% to 80% thermal cyclic lifetime. Parametric study at ~135J/m2 was performed and variation in residual stress with rumpling for different oxide scale thicknesses was examined. This study showed that the contribution of rumpling in residual stress relaxation decreased with an increase in TGO thickness. High pressure turbine blades serviced for 2843 hours and in the as coated form were also examined using electron microscopy and photostimulated luminescence. The difference in iv residual stress values obtained using PL on the suction and pressure sides of as-coated turbine blade were discussed. The presence of a thick layer of deposit on the serviced blade gave signals from stress free α-Al2O3 in the deposit, not from the TGO. The TGO growth constant data from the disc-shape TBCs, thermally cycled at 1100°C, and studies by other authors at different temperatures but on similar EB-PVD coated TBCs with (Pt, Ni)Al bond coat and CMSX-4 Nibased superalloy were used to determine the temperature profile at the YSZ/bond coat interface. The interfacial temperature profiles of the serviced blade and the YSZ thickness profile were compared to document the variable temperature exposure at the leading edge, trailing edge, suction and the pressure side.
86

Mechanisms Of Lifetime Improvement In Thermal Barrier Coatings With Hf And/or Y Modification Of Cmsx-4 Superalloy Substrates

Liu, Jing 01 January 2007 (has links)
In modern turbine engines for propulsion and energy generation, thermal barrier coating (TBCs) protect hot-section blades and vanes, and play a critical role in enhancing reliability, durability and operation efficiency. In this study, thermal cyclic lifetime and microstructural degradation of electron beam physical vapor deposited (EB-PVD) Yttria Stabilized Zirconia (YSZ) with (Ni,Pt)Al bond coat and Hf- and/or Y- modified CMSX-4 superalloy substrates were examined. Thermal cyclic lifetime of TBCs was measured using a furnace thermal cycle test that consisted of 10-minute heat-up, 50-minute dwell at 1135C, and 10-minute forced-air-quench. TBC lifetime was observed to improve from 600 cycles to over 3200 cycles with appropriated Hf- and/or Y alloying of CMSX-4 superalloys. This significant improvement in TBC lifetime is the highest reported lifetime in literature with similar testing parameters. Beneficial role of reactive element (RE) on the durability of TBCS were systematically investigated in this study. Photostimulated luminescence spectroscopy (PL) was employed to non-destructively measure the residual stress within the TGO scale as a function of thermal cycling. Extensive microstructural analysis with emphasis on the YSZ/TGO interface, TGO scale, TGO/bond coat interface was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning electron microscopy (STEM) as a funcion of thermal cycling including after the spallation failure. Focused ion beam in-situ lift-out (FIB-INLO) technique was employed to prepare site-specific TEM specimens. X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS) were also employed for phase identification and interfacial chemical analysis. While undulation of TGO/bond coat interface (e.g., rumpling and ratcheting) was observed to be the main mechanism of degradation for the TBCs on baseline CMSX-4, the same interface remained relatively flat (e.g., suppressed rumpling and ratcheting) for durable TBCs on Hf- and/or Y-modified CMSX-4. The fracture paths changed from the YSZ/TGO interface to the TGO/bond coat interface when rumpling was suppressed. The geometrical incompatibility between the undulated TGO and EB-PVD YSZ lead to the failure at the YSZ/TGO interface for TBCs with baseline CMSX-4. The magnitude of copressive residual stress within the TGO scale measured by PL gradually decreased as a function of thermal cycling for TBCs with baseline CMSX-4 superalloy substrates. This gradual decrease corrsponds well to the undulation of the TGO scale that may lead to relaxation of the compressive residual stress within the TGO scale. For TBCs with Hf- and/or Y-modified CMSX-4 superalloy substrates, the magnitude of compressive residual stress within the TGO scale remained relatively constant throughout the thermal cycling, although PL corresponding to the stress-relief caused by localized cracks at the TGO/bond coat interface and within the TGO scale was observed frequently starting 50% of lifetime. A slightly smaller parabolic growth constant and grain size of the TGO scale was observed for TBCs with Hf- and/or Y- modified CMSX-4. Small monoclinic HfO2 precipitates were observed to decorate grain boundaries and the triple pointes within the alpha-Al2O3 scale for TBCs with Hf- and/or Y-modified CMSX-4 substrates. Segregation of Hf/Hf4+ at the TGO/bond coat interfaces was also observed for TBCs with Hf- and/or Y-modified CMSX-4 superalloys substrates. Adherent and pore-free YSZ/TGO interface was observed for TBCs with Hf- and/or Y-modified CMSX-4, while a significant amount of decohesion at the YSZ/TGO interface was observed for TBCs with baseline CMSX-4. The beta-NiAl(B2) phase in the (Ni,Pt)Al bond coat was observed to partially transform into gama prime-Ni3Al (L12) phase due to depletion of Al in the bond coat during oxidation. More importantly, the remaining beta-NiAl phase transformed into L10 martensitic phase upon cooling even though there was no significant difference in these phase transformations for all TBCs. Results from these microstructural observations are documented to elucidate mechanisms that suppress the rumpling of the TGO/bond coat interface, which is responsible for superior performance of EB-PVD TBCs with (Ni,Pt)Al bond coat and Hf- and/or Y-modified CMXS-4 superalloy.
87

High Performance Thermal Barrier Coatings On Additively Manufactured Nickel Base Superalloy Substrates

Tejesh Charles Dube (8812424) 19 February 2024 (has links)
<p>Thermal barrier coatings (TBCs) made of low-thermal-conductivity ceramic topcoat, metallic bond coat and metallic substrate, have been extensively used in gas turbine engines for thermal protection. Recently, additive manufacturing (AM) or 3D printing techniques have emerged as promising manufacturing techniques to fabricate engine components. The motivation of the thesis is that currently, application of TBCs on AM’ed metallic substrate is still in its infancy, which hinders the realization of its full potential.</p> <p>The goal of this thesis is to understand the processing-structure-property relationship in thermal barrier coating deposited on AM’ed superalloys.</p> <p>The APS method is used to deposit 7YSZ as the topcoat and NiCrAlY as the bond coat on TruForm 718 substrates fabricated using the direct metal laser sintering (DMLS) method. For comparison, another TBC system with the same topcoat and bond coat is deposited using APS on wrought 718 substrates. For thermomechanical property characterizations, thermal cycling, thermal shock (TS) and jet engine thermal shock (JETS) tests are performed for both TBC systems to evaluate thermal durability. Microhardness and elastic modulus at each layer and respective interfaces are also evaluated for both systems. Additionally, the microstructure and elemental composition are thoroughly studied to understand the cause for better performance of one system over the other.</p> <p>Both TBC systems showed similar performance during the thermal cycling and JETS test but TBC systems with AM substrates showed enhanced thermal durability especially in the case of the more aggressive thermal shock test. The TBC sample with AM substrate failed after 105 thermal shock cycles whereas the one with wrought substrate endured a maximum of 85 cycles after which it suffered topcoat delamination. The AM substrates also demonstrated an overall higher microhardness and elastic modulus except for post thermal cycling condition where it slightly underperformed. This study successfully demonstrated the use of AM built substrates for an improved TBC system and validated the enhanced thermal durability and mechanical properties of such a system.</p> <p>A modified YSZ TBC architecture with an intermediate Ti3C2 MXene layer is proposed to improve the interfacial adhesion at the topcoat/bond coat interface to improve the thermal durability of YSZ</p> <p>12</p> <p>TBC systems. First principles calculations are conducted to study the interfacial adhesion energy in the modified and conventional YSZ TBC systems. The results show enhanced adhesion at the bond coat/MXene interface. At the topcoat/MXene interface, the adhesion energy is similar to the adhesion energy between the topcoat and bond coat in a conventional YSZ TBC system.</p> <p>An alternative route is proposed for the fabrication of YSZ TBC on nickel base superalloy substrates by using the SPS technology. SPS offers a one-step fabrication process with faster production time and reduced production cost since all the layers of the TBC system are fabricated simultaneously. Two different TBC systems are processed using the same heating protocol. The first system is a conventional TBC system with 8YSZ topcoat, NiCoCrAlY bond coat and nickel base superalloy substrate. The second system is similar to the first but with an addition of Ti3C2 MXene layer between the topcoat and the bond coat. Based on the first principles study, addition of Ti3C2 layer enhances the adhesion strength of the topcoat/bond coat interface, an area which is highly susceptible to spallation. Further tests such as thermal cycling and thermal shock along with the evaluation of mechanical properties would be carried out for these samples in future studies to support our hypothesis.</p>
88

High Temperature Damage Characterization Of Ceramic Composites And Protective Coatings

Appleby, Matthew P. 09 June 2016 (has links)
No description available.
89

Processing, characterization, and properties of some novel thermal barrier coatings

Jadhav, Amol D. 17 July 2007 (has links)
No description available.
90

Slurry coatings from aluminium microparticles on Ni-based superalloys for high temperature oxidation protection / Revêtements élaborés à partir d'une barbotine à base de microparticules d'aluminium destinées à la protection des superalliages base Ni contre l'oxydation à haute température

Rannou, Benoît 20 November 2012 (has links)
En raison de leur bonne résistance mécanique à haute température, les superalliages base nickel sont employés dans les turbines aéronautiques et de production d’énergie. Ils doivent alors être capables de résister aux phénomènes d’oxydation « sèche » intervenant entre 900 et 1500°C. Ces matériaux sont donc protégés par des revêtements à base d’aluminure de nickel (β-NiAl). De plus, dans les sections les plus chaudes des turbines (T>1050°C), une barrière thermique (BT) est ajoutée afin de diminuer l’impact de la température sur le substrat. Dans le cadre du projet de recherche Européen « PARTICOAT », le travail décrit dans cette thèse a porté sur l’élaboration d’un système complet de revêtements protecteurs (BC+BT) à l’aide d’un procédé en une seule étape, à partir d’une barbotine obtenue par dispersion de microparticules d’Al dans une base aqueuse, milieu susceptible de satisfaire aux directives environnementales européennes. Des caractérisations rhéologique et physico-chimique ont montré la stabilité de la barbotine jusqu’à sept jours. Après dépôt de cette dernière par pulvérisation, un traitement thermique adapté a conduit, via la formation intermédiaire d’Al liquide, à l’obtention d’un revêtement d’aluminure de nickel (β-NiAl) comparable à ceux obtenus par les procédés industriels actuels. L’oxydation des particules d’Al permet la formation simultanée d’une « mousse » d’alumine (concept PARTICOAT) superficielle. Après validation des mécanismes réactionnels mis en jeu sur un substrat modèle de nickel pur, l’extrapolation du procédé à différents superalliages base nickel (René N5 (SX), CM-247 (DS), PWA-1483 (SX) et IN-738LC (EQ)) a donné des revêtements présentant différentes compositions et microstructures. Un intérêt particulier a alors été porté sur l’étude de l’influence des éléments d’alliage (Cr, Ta, Ti) et de leur ségrégation au sein du revêtement. Le comportement à haute température des échantillons revêtus a pu être évalué à l’aide de tests d’oxydation isotherme (1000h sous air entre 900 et 1100°C). Il a ainsi été montré que les phénomènes d’oxydation et d’interdiffusion régissent les mécanismes de dégradation. Par ailleurs, l’électrodéposition de cérine préalablement à l’application du procédé de revêtement PARTICOAT a permis de limiter fortement les phénomènes d’interdiffusion et de stabiliser la couche d’aluminure de nickel. / Because of their good mechanical resistance at high temperature, Ni-based superalloys are used for aero-engine and land-based turbines but undergo “dry” oxidation between 900 and 1500°C. These materials are thus coated with nickel-aluminide coatings (BC). An additional thermal barrier coating (TBC) is generally applied in the hottest sections of the turbines (T>1050°C) to lower the impact of the temperature on the substrate. In the framework of the European research programme “PARTICOAT”, this PhD work was focused on the growth mechanisms of a full protective coating system (BC+TBC) in a single step process, using a water-based slurry containing a dispersion of Al micro-particles to satisfy the European environmental directives. The rheological and physico-chemical characterizations showed the slurry stability up to seven days. After depositing the latter by air spraying, a tailored thermal treatment resulted in a nickel-aluminide coating (β-NiAl) similar to the conventional industrial ones but through an intermediate Al liquid phase stage. Simultaneously, the oxidation of the Al micro-particles brought aboutthe formation of a top alumina “foam” (PARTICOAT concept). After a validation step of the mechanisms involved in pure Ni substrate, the extrapolation of the process to several Ni-based superalloys (René N5 (SX), CM-247 (DS), PWA- 1483 (SX) and IN-738LC (EQ)) revealed different coating compositions and microstructures. A particular attention was therefore paid onto the effect of alloying elements (Cr, Ta, Ti) as well as their segregation in the coating. The high temperature behaviour of the coated samples has been studied through isothermal oxidation (1000h in air between 900 and 1100°C) and showed that the oxidation and interdiffusion phenomena ruled the degradation mechanisms. Besides, the electrodeposition of ceria before the application of the PARTICOAT coating allowed to strongly limit interdiffusion phenomena and stabilized the nickel aluminide coating.

Page generated in 0.0763 seconds