• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 23
  • 7
  • 6
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 139
  • 139
  • 78
  • 68
  • 28
  • 27
  • 26
  • 22
  • 21
  • 21
  • 20
  • 19
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Analysis of Laser Induced Spallation of Electron Beam Physical Vapor Deposited (EB-PVD) Thermal Barrier Coatings

Beeler, David Allen 08 November 2013 (has links)
No description available.
52

Development of High Temperature Erosion Tunnel and Tests of Advanced Thermal Barrier Coatings

Shin, Dongyun 07 June 2018 (has links)
No description available.
53

Particle Erosion of Gas Turbine Thermal Barrier Coating

Swar, Rohan January 2009 (has links)
No description available.
54

Modeling Oxidation-Induced Degradation and Environment-Induced Damage of Thermal Barrier Coatings

Zhang, Bochun 20 July 2022 (has links)
Thermal Barrier Coating systems (TBCs) serve as a key component in gas turbines in aerospace engines, isolating the metallic substrate from severe heat flux of the environment. The durability of TBCs has been considered to be a critical issue to determine the service lifespan of hot section components. Comprehensive studies of failure mechanisms benefit the gas turbine industry to develop TBCs with better material properties and stable microstructures, thus potentially enhancing their durability. To date, many failure mechanism analyses have been conducted based on the understanding of critical residual stress developed under different thermal tests. For the present study, using the Finite Element (FE) method with temperature-process-dependent model parameters, the maximum residual stress is calculated with evolution of the localized/global interfacial roughness profile based on Electron Beam-Physical Vapour Deposition Thermal Barrier Coating system (EB-PVD TBCs). With studies of cracking routes from past research, qualitative failure mechanism analysis is conducted for EB-PVD TBCs. In addition, the estimated energy release rates are compared to reveal the effect of different thermal profiles on the crack driving forces for Atmospheric Plasma Sprayed Thermal Barrier Coating systems (APS-TBCs). Using previously observed cracking routes from different thermal cycling experiments, a quantitative failure mechanism analysis is conducted for APS-TBCs with modified analytical expressions. In addition, literature works revealed that physics and mechanics-based models were proposed to evaluate environment induced damage. For the last part of my research, erosion of EB-PVD TBCs is estimated using a modified solid particle erosion model. A stochastic approach is applied to study the erosion of EB-PVD topcoat (TC) under real engine service conditions. The durability of TBCs is affected by both oxidation-induced degradation and environment-induced damage. The combination of “internal” crack driving forces (generated from residual stresses developed upon different stages of thermal cycles) and “external” erosion damage (from temperature-process dependent brittle/ductile erosion) lead to complexity of evaluating durability under different service conditions.
55

Cure Kinetics of Two Part Epoxy Resin and the Effect on Characterization of Thermal Barrier Coatings

Chang, Sunny 28 May 2015 (has links)
The aerospace industry strives to develop new methods of refining gas turbine engines by increasing power and thermal efficiencies while simultaneously reducing cost. Turbine engines operate under high temperatures and therefore thermal barrier coatings (TBCs) composed of yttria-stabilized zirconia (YSZ) play an important role in improving the performance of the components that make up the engine. Failure of the TBC could lead to catastrophic events, thus requiring consistent and accurate characterization for supplier qualification and production quality assurance. However, due to porosity and the anisotropic behavior of the coating and variability in processing of TBCs, consistent characterization has proven to be extremely challenging. One of the reoccurring issues is the inconsistency in measuring percent porosity, which stems from the difficulty in distinguishing filled pores from damaged, unfilled voids. Sample preparation of TBCs involves sectioning, mounting, grinding, polishing, and characterization. Eliminating variability in characterization begins with mounting which is a critical step to protect the surface integrity and edge retention of the coating during grinding and polishing. The curing kinetics of a slow cure two part epoxy was investigated and the TBC samples were mounted and cured at heating rates of 2, 5, and 10°C/min to 55°C and 70°C. Grinding and polishing procedures simulated industry practices followed by characterization with optical microscopy. Results showed that heating rates of 2°C/min to 55°C and 70°C have the best impregnation properties while uncontrolled or high heating rates of 10°C/min had an increase in the amount of pullouts and lack of infiltration from the epoxy. The curing kinetics of the epoxy needs to be controlled to eliminate the ambiguity of filled and unfilled pores. / Master of Science
56

Conjugate heat transfer effects on gas turbine film cooling : including thermal fields, thermal barrier coating, and contaminant deposition

Stewart, William Robb 07 October 2014 (has links)
The efficiency of natural gas turbines is directly linked to the turbine inlet temperature, or the combustor exit temperature. Further increasing the turbine inlet temperature damages the turbine components and limits their durability. Advances in turbine vane cooling schemes protect the turbine components. This thesis studies the conjugate effects of internal cooling, film cooling and thermal barrier coatings (TBC) on turbine vane metal temperatures. Two-dimensional thermal profiles were experimentally measured downstream of a single row of film cooling holes on both an adiabatic and a matched Biot number model turbine vane. The measurements were taken as a comparison to computational simulations of the same model and flow conditions. To improve computational models of the evolution of a film cooling jet as it propagates downstream, the thermal field above the vane, not just the footprint on the vane surface must be analyzed. This study expands these data to include 2-D thermal fields above the vane at 0, 5 and 10 hole diameters downstream of the film cooling holes. In each case the computational jets remained colder than the experimental jets because they did not disperse into the mainstream as quickly. Finally, in comparing results above adiabatic and matched Biot number models, these thermal field measurements allow for an accurate analysis of whether or not the adiabatic wall temperature was a reasonable estimate of the driving temperature for heat transfer. In some cases the adiabatic wall temperature did give a good indication of the driving temperature for heat transfer while in other cases it did not. Previous tests simulating the effects of TBC on an internally and film cooled model turbine vane showed that the insulating effects of TBC dominate over variations in film cooling geometry and blowing ratio. In this study overall and external effectiveness were measured using a matched Biot number model vane simulating a TBC of thickness 0.6d, where d is the film cooing hole diameter. This new model was a 35% reduction in thermal resistance from previous tests. Overall effectiveness measurements were taken for an internal cooling only configuration, as well as for three rows of showerhead holes with a single row of holes on the pressure side of the vane. This pressure side row of holes was tested both as round holes and as round holes embedded in a realistic trench with a depth of 0.6 hole diameters. Even in the case of this thinner TBC, the insulating effects dominate over film cooling. In addition, using measurements of the convective heat transfer coefficient above the vane surface, and the thermal conductivities of the vane wall and simulated TBC material, a prediction technique of the overall effectiveness with TBC was evaluated. / text
57

Comparative analysis of Thermal Barrier Coatings produced using Suspension and Solution Precursor Feedstock / Jämförande analys av värmebarriärbeläggningar tillverkade av suspension och solution plasmasprutning

Ganvir, Ashish January 2014 (has links)
The research work performed in this thesis has been carried out at the Production Tech-nology Centre where the Thermal Spray research group of University West has its work-shop and labs. This research work has been performed in collaboration with the International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India. First of all, I would like to express my sincere thanks and gratitude to my supervisors Dr. Nicolaie Markocsan and Dr. Nicholas Curry for their guidance, great support and valuable suggestions without which this work could not have been possible. I would also like to thanks Prof. Per Nylén for keeping faith in me and providing me an opportunity to work at PTC, which is a great place to perform research. It is my pleasure being their student and I wish I would keep learning from all of them, both on academic and personal grounds. I would also like to thank my colleagues at PTC Mr. Mohit Gupta and Mr. Stefan Björklund, for their help and support during this work. I would like to acknowledge the H.C. Starck Company for its financial support for the pro-ject; Dr. Filofteia-Laura TOMA at Fraunhofer IWS, Dresden to help us in spraying suspen-sion sprayed YSZ top coats, G Shivkumar from ARCI to help us in spraying solution pre-cursor sprayed top coats and Toni Bogdanoff, Jönköping University to help us in conduct-ing the LFA experiment
58

Design of Thermal Barrier Coatings : A modelling approach

Gupta, Mohit Kumar January 2014 (has links)
Atmospheric plasma sprayed (APS) thermal barrier coatings (TBCs) are commonly used for thermal protection of components in modern gas turbine application such as power generation, marine and aero engines. TBC is a duplex material system consisting of an insulating ceramic topcoat layer and an intermetallic bondcoat layer. TBC microstructures are highly heterogeneous, consisting of defects such as pores and cracks of different sizes which determine the coating's final thermal and mechanical properties, and the service lives of the coatings. Failure in APS TBCs is mainly associated with the thermo-mechanical stresses developing due to the thermally grown oxide (TGO) layer growth at the topcoat-bondcoat interface and thermal expansion mismatch during thermal cycling. The interface roughness has been shown to play a major role in the development of these induced stresses and lifetime of TBCs.The objective of this thesis work was two-fold for one purpose: to design an optimised TBC to be used for next generation gas turbines. The first objective was to investigate the relationships between coating microstructure and thermal-mechanical properties of topcoats, and to utilise these relationships to design an optimised morphology of the topcoat microstructure. The second objective was to investigate the relationships between topcoat-bondcoat interface roughness, TGO growth and lifetime of TBCs, and to utilise these relationships to design an optimal interface. Simulation technique was used to achieve these objectives. Important microstructural parameters influencing the performance of topcoats were identified and coatings with the feasible identified microstructural parameters were designed, modelled and experimentally verified. It was shown that large globular pores with connected cracks inherited within the topcoat microstructure significantly enhanced TBC performance. Real topcoat-bondcoat interface topographies were used to calculate the induced stresses and a diffusion based TGO growth model was developed to assess the lifetime. The modelling results were compared with existing theories published in previous works and experiments. It was shown that the modelling approach developed in this work could be used as a powerful tool to design new coatings and interfaces as well as to achieve high performance optimised morphologies.
59

Étude de la dissolution de diverses terres rares dans des liquides silicatés (CMAS) de composition variable : contribution au développement des barrières thermiques en ZRO₂-RE₂O₃ (RE=La-Lu) / Dissolution of rare earth oxides in various silicate melts : Application to CMAS-resistant ZRO₂-RE₂O₃ (RE = La-Lu) Thermal Barrier Coatings

Perrudin, François 13 December 2018 (has links)
L’ingestion de sables et de cendres volcaniques par les moteurs d’avion conduit à la formation de dépôts silicatés (CMAS) qui s’infiltrent dans la porosité du revêtement barrière thermique (BT) en zircone yttriée des aubes de turbine. De nouvelles compositions de BT issues du système ZrO2-RE2O3 (RE = La-Lu) sont donc envisagées. En effet, leur réactivité chimique au contact des CMAS peut conduire à la formation de phases cristallisées, notamment la phase apatite Ca2RE8(SiO4)6O2, qui bloquent l’infiltration du CMAS. Cependant, divers silicates du système CaO-RE2O3-SiO2 sont susceptibles d’entrer en compétition avec sa formation et de plus, la composition du CMAS varie selon les régions survolées. L’objectif de ces travaux de thèse est de déterminer l’influence de la composition du CMAS et de la terre rare sur les mécanismes réactionnels de dissolution et de précipitation. Divers oxydes RE2O3 à basicité croissante (RE = Yb, Dy, Gd, Sm et Nd) et un CMAS de composition simplifiée du système CaO-Al2O3-SiO2 (CAS) ont été choisis. Des teneurs fixes en MgO et Fe2O3 ont été ensuite ajoutées au CAS en faisant varier le rapport CaO/SiO2 entre 0,4 et 1,6. Les phases apatite et cyclosilicate Ca3RE2(Si3O9)2 ont également été synthétisées afin d’étudier leur dissolution. Il est montré que le mécanisme de dissolution des RE2O3 est indirect, les équilibres locaux établis avec cet oxyde imposant systématiquement la formation de la phase apatite. Sa cristallisation est favorisée par un rayon cationique RE3+ proche de celui de Ca2+. Lorsque l’écart est important, la nucléation de la phase cyclosilicate est rapidement observée dans le CAS avec une répartition préférentielle de ces cations RE3+ dans les sites de coordinence 6. La solubilité en RE dans le liquide silicaté augmente avec la basicité de l’oxyde RE2O3 et en présence de MgO et Fe2O3. La variation de composition du CMAS modifie la nature des phases à l’équilibre. Leurs limites de solubilité en RE sont inférieures à celles de la phase apatite, ce qui réduit d’autant leur vitesse de redissolution dans le liquide silicaté / Fine particles of sand, dust or volcanic ashes ingested by aircraft engines are well-known to damage Thermal Barrier Coatings (TBC) when they infiltrate their porous microstructure as molten silicate (CMAS). They are mainly constituted of CaO-MgO-Al2O3-SiO2 in variable proportions and also contain metallic oxides. RE2Zr2O7 compositions are TBC candidate materials as they have shown efficiency to mitigate CMAS infiltration due to their reactivity with synthetic CMAS. Indeed, the dissolution reaction leads to rapid sealing of the topcoat porosity mainly due to the formation of crystalline Ca2Gd8(SiO4)6O2 apatite. However, many rare-earth silicates are likely to compete with apatite crystallization and little is known on reaction kinetics and thermodynamics involving RE2O3 and multi-component CMAS system. This work aims to determine the influence of CMAS and rare earth composition on dissolution and precipitation mechanisms. A simplified CAS was first selected with eutectic (1170°C), 65SiO2-26CaO-9Al2O3 (mol. %) composition. Dissolution of various RE2O3 with increasing basicity (RE = Yb, Dy, Gd, Sm and Nd) as well as synthetic apatite and cyclosilicate Ca3RE2(Si3O9)2 phases was then performed at 1200°C in CAS-melt. Finally, fixed MgO and Fe2O3 contents were added to CAS melt with an increasing CaO/SiO2 ratio. The results showed that RE2O3 dissolution mechanism is indirect. Apatite formation results from local equilibrium at the interface with solid RE2O3 whatever the rare earth and CMAS composition. Its crystallization is favored when Ca2+ and RE3+ ionic radii are close as they are both distributed within 9-fold coordination sites. Conversely, Ca and RE mismatch leads to rapid nucleation of cyclosilicate phase in CAS as they are preferentially distributed within a 6-fold coordination site. MgO and Fe2O3 addition in CAS as well as RE2O3 basicity tend to increase RE solubility in silicate melt. Phases in thermodynamic equilibrium strongly depend on CMAS composition but generally exhibits lower RE solubility and dissolution rate in melt than apatite
60

Procédé dual de mise en forme de barrières thermiques architecturées (durabilité, résistance aux CMAS) et de réparation de barrières thermiques endommagées / Dual process for shaping thermal barrier coatings (durability, resistance to CMAS) and repairing damaged thermal barrier coatings

Delon, Elodie 24 November 2017 (has links)
Dans le secteur aéronautique en pleine expansion, les préoccupations environnementales prennent une place de plus en plus importante. Les motoristes recherchent des solutions innovantes pour augmenter les rendements tout en diminuant les coûts. Dans cette perspective, de nouveaux systèmes de barrières thermiques synthétisés par la voie sol-gel à partir de poudres commerciales, de céramiques avec différents facteurs de forme et d'agents porogènes ont été mis en œuvre et évalués. Certains systèmes présentent une durée de vie de plus de 1000 cycles en oxydation cyclique. Malgré tout, cet accroissement des températures de fonctionnement des moteurs, induit une élévation des températures de surfaces des barrières thermiques et peut générer de nouvelles dégradations du système complet : la corrosion à hautes températures par les CMAS. Pour pallier ces inconvénients, il est possible de développer des revêtements anti-CMAS, susceptibles de réagir avec les composés CMAS avant qu'ils n'aient un effet néfaste sur l'intégrité de la barrière thermique. Dans cette étude, nous nous sommes intéressés particulièrement aux revêtements sacrificiels anti-CMAS à base d'yttrine et de systèmes pyrochlore, qui ont été testés sur des barrières thermiques industrielles de type EBPVD. Par ailleurs, les procédés que nous avons développés, basés sur la voie sol-gel, nous permettent, de par leur facilité de mise en œuvre, d'envisager des perspectives prometteuses en termes de réparabilité des barrières thermiques endommagées. En effet, compte tenu du coût élevé de fabrication des pièces, les aubes devraient être réparées plusieurs fois avant d'être mises au rebut. Dans ce travail, un procédé de mise en forme a été évalué dans ce sens. Il s'agit de l'électrophorèse qui est une technique bien adaptée au dépôt sur pièces complexes. L'objectif de ces investigations a donc été double : tout d'abord créer de nouveaux systèmes de barrières thermiques avec des propriétés anti-CMAS par électrophorèse puis réparer les barrières thermiques EBPVD endommagées et leur déposer une couche protectrice anti-CMAS par ce même procédé. Cet aspect " procédé " sera abordé en dernière partie de ces travaux. / In the aeronautics sector, environmental concerns are becoming increasingly important. Engine manufacturers are looking for innovative solutions to increase efficiency while lowering costs. The objective is to optimize thermal conductivity and durability with the cyclic oxidation resistance. In this perspective, new thermal barrier systems synthesized by the sol-gel route from commercial powders, ceramics with various form factors and pore-forming agents have been implemented and evaluated. Some systems are a lifetime higher than 1000 cycles in cyclic oxidation. However, this increase in the operating temperatures of the engines induces an increase in the temperature of the surfaces of the thermal barriers and can generate further degradations of the complete system: the corrosion by CMAS. To overcome these disadvantages, it is possible to develop anti-CMAS coatings capable of reacting with CMAS compounds before they have a detrimental effect on the integrity of the thermal barrier. In this study, we were particularly interested in anti-CMAS protective coatings based on yttria and pyrochlore systems, which were tested on industrial thermal barriers realized by EBPVD. Moreover, the processes we have developed, based on the sol-gel path, allow us, because of their ease of implementation, to envisage promising prospects in terms of repair of damaged thermal barriers. Indeed, given the high cost of manufacturing parts, the blades should be repaired several times before being discarded. In this work, a shaping process has been evaluated in this direction. This is electrophoretic deposition which is a technique allowing to deposit on complex parts. The objective of these investigations was therefore twofold: firstly to create new thermal barrier systems with anti-CMAS properties by electrophoretic deposition and then to repair the damaged EBPVD thermal barriers and to deposit an anti-CMAS protective layer by this same process. This "process" aspect will be discussed at the end of this work.

Page generated in 0.0408 seconds