• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 258
  • 142
  • 89
  • 57
  • 27
  • 19
  • 8
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 729
  • 103
  • 103
  • 93
  • 88
  • 88
  • 87
  • 80
  • 77
  • 70
  • 68
  • 60
  • 59
  • 53
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

MICROSTRUCTURE AND CONDUCTIVITY OF THE SODIUM NICKEL CHLORIDE (ZEBRA) BATTERY CATHODE

Javadi-Doodran, Tannaz 10 1900 (has links)
<p>The microstructure of the ZEBRA cells was examined at different cycle lifetimes. Various methods of sample preparation were used to remove the NaAlCl<sub>4</sub> electrolyte and expose the cathode microstructure. Features such as layered NiCl<sub>2</sub> crystals, large NaCl grains and needle-like FeCl<sub>2</sub> phases were observed by SEM. The results indicate that nickel particles grow in size with age of the cell. Moreover, the presence of both Na<sub>6</sub>FeCl<sub>8</sub> and NiAl<sub>2</sub>Cl<sub>8</sub> phases was confirmed by XRD. Thermodynamic modeling was used to predict the phases expected when a cell has undergone overcharge or overdischarge during cycling. It is postulated that some phases observed in the cathode at room temperature may be artifacts due to transformations that occur during cooling and do not exist at the operating temperature.</p> <p>The presence of isolated nickel particles within the cathode was confirmed by SEM and FIB techniques. Furthermore, the conductivity of the NaAlCl<sub>4</sub> electrolyte was measured at high temperatures and various additives were used to make the electrolyte a mixed ionic-electronic conductor.</p> <p>A special cell was designed to measure the conductivity of hygroscopic and volatile electrolyte at high temperatures. The best conductivity was obtained when using 0.2 mole fraction Bi as an additive to the NbCl<sub>5</sub>+NaAlCl<sub>4</sub> mixture (Nb:Na=0.3, Bi:Nb=0.2). The conductivity values were doubled between 190 and 500˚C. The DC measurements confirm the presence of electronic conductivity in Bi+NbCl<sub>5</sub>+NaAlCl<sub>4</sub> mixtures. In addition, the effect of NaF and Na<sub>2</sub>S on the conductivity of the NaAlCl<sub>4</sub> electrolyte was measured.</p> / Doctor of Philosophy (PhD)
292

Uniqueness and Mixing Properties of Equilibrium States

Call, Benjamin 02 September 2022 (has links)
No description available.
293

Grain Boundary Segregation: the New Sprouts

Bokstein, Boris, Itckovich, Alexei, Pokhvisnev, Yury, Rodin, Alexei 21 September 2022 (has links)
Some aspects of grain boundary segregation (GBS) are discussed. This paper adds two new sprouts. The first is connected with formation of the atomic complexes in boundary region and their effect on grain boundary diffusion (GBD). The second – with a nonhomogeneity of energy distribution between boundary sites.
294

Evaluation of zero-dimensional stochastic reactor modelling for a diesel engine application

Korsunovs, Aleksandrs, Campean, Felician, Pant, G., Garcia-Afonso, O., Tunc, E. 29 April 2019 (has links)
Yes / Prediction of engine-out emissions with high fidelity from in-cylinder combustion simulations is still a significant challenge early in the engine development process. This paper contributes to this fast evolving body of knowledge by focusing on the evaluation of NOx emissions predictions capability of a Probability Density Function (PDF) based Stochastic Reactor Engine Models (SRM), for a Diesel engine. The research implements a systematic approach to the study of the SRM engine model performance, based on a detailed space-filling design of experiments based sensitivity analysis of both external and internal parameters, evaluating their effects on the accuracy in matching physical measurements of in-cylinder conditions, and NOx emissions output. The approach proposed in this paper introduces an automatic SRM model calibration methodology across the engine operating envelope, based on a multi-objective optimization approach. This aims to exploit opportunities for internal SRM parameters tuning to achieve good overall modelling performance as a trade-off between physical in-cylinder measurements accuracy and the output NOx emissions predictions error. The results from the case study provide a valuable insight into the effectiveness of the SRM model, showing good capability for NOx emissions prediction and trends, while pointing out the critical sensitivity to the external input parameters and modelling conditions. / 41043/R00836 Jaguar Land Rover funded research “MULTI-PHYSICS ENGINE SIMULATION FRAMEWORK: RESEARCH INTO ADVANCED CAE CAPABILITY FOR MULTI-PHYSICS SIMULATION FRAMEWORK TO GENERATE HIGH FIDELITY PREDICTION OF ENGINE-OUT EMISSIONS”, 2016 – 2019. / Research Development Fund Publication Prize Award winner, March 2019.
295

Morphology, Crystallization and Melting Behavior of Propylene-Ethylene Statistical Copolymers

Uan-Zo-li, Julie Tammy 25 October 2005 (has links)
In this work the morphology, crystallization and melting behavior of novel Dow Chemical propylene-ethylene copolymers were investigated. The incorporation of ethylene units into a polypropylene chain resulted in the decrease in crystallization, melting and glass transition temperatures and overall crystallinity. Based on the shape of heat capacity curves and the dependence of the melting temperature offset on ethylene content, it was concluded that copolymers prepared using different catalyst systems exhibited different ethylene sequence length distributions. The behavior of Dow Chemical propylene-ethylene copolymers was compared to that of copolymers prepared using traditional metallocene and Ziegler-Natta catalysts. The catalyst system used in the preparation of these new copolymers is similar to a metallocene catalyst system. It was demonstrated that ethylene defects are partially included in the polypropylene crystal. The thermodynamic heat of fusion at the equilibrium melting temperature decreased by 44% with an increase in ethylene concentration from 0 mol% to 21.2 mol%. On the basis of calorimetric and density data, the inclusion model based on the Sanchez-Eby crystallization theory was shown to be applicable for the evaluation of the degree of crystallinity. At the same time, inadequacies were found in application of the rigid amorphous fraction model to these copolymers. The formation of gamma-phase crystals was shown to be favored by both an increase in the ethylene content and a decrease in the crystallization rate. Increase in the ethylene content was shown to lead to a decrease in the density, length and thickness of alpha-phase crystals. It was also demonstrated that the cross-hatching morphology is present in all propylene-ethylene copolymers. / Ph. D.
296

Experimental Study of Two-Phase Cavitating Flows and Data Analysis

Ge, Mingming 25 May 2022 (has links)
Cavitation can be defined as the breakdown of a liquid (either static or in motion) medium under very low pressure. The hydrodynamic happened in high-speed flow, where local pressure in liquid falls under the saturating pressure thus the liquid vaporizes to form the cavity. During the evolution and collapsing of cavitation bubbles, extreme physical conditions like high-temperature, high-pressure, shock-wave, and high-speed micro-jets can be generated. Such a phenomenon shall be prevented in hydraulic or astronautical machinery due to the induced erosion and noise, while it can be utilized to intensify some treatment processes of chemical, food, and pharmaceutical industries, to shorten sterilization times and lower energy consumption. Advances in the understanding of the physical processes of cavitating flows are challenging, mainly due to the lack of quantitative experimental data on the two-phase structures and dynamics inside the opaque cavitation areas. This dissertation is aimed at finding out the physical mechanisms governing the cavitation instabilities and making contributions in controlling hydraulic cavitation for engineering applications. In this thesis, cavitation developed in various convergent-divergent (Venturi) channels was studied experimentally using the ultra-fast synchrotron X-ray imaging, LIF Particle Image Velocimetry, and high-speed photography techniques, to (1) investigate the internal structures and evolution of bubble dynamics in cavitating flows, with velocity information obtained for two phases; (2) measure the slip velocity between the liquid and the vapor to provide the validation data for the numerical cavitation models; (3) consider the thermodynamic effects of cavitation to establish the relation between the cavitation extent and the fluid temperature, then and optimize the cavitation working condition in water; (4) seek the coherent structures of the complicated high-turbulent cavitating flow to reduce its randomness using data-driven methods. / Doctor of Philosophy / When the pressure of a liquid is below its saturation pressure, the liquid will be vaporized into vapor bubbles which can be called cavitation. In many hydraulic machines like pumps, propulsion systems, internal combustion engines, and rocket engines, this phenomenon is quite common and could induce damages to the mechanical systems. To understand the mechanisms and further control cavitation, investigation of the bubble inception, deformation, collapse, and flow regime change is mandatory. Here, we performed the fluid mechanics experiment to study the unsteady cavitating flow underlying physics as it occurs past the throat of a Venturi nozzle. Due to the opaqueness of this two-phase flow, an X-ray imaging technique is applied to visualize the internal flow structures in micrometer scales with minor beam scattering. Finally, we provided the latest physical model to explain the different regimes that appear in cavitation. The relationship between the cavitation length and its shedding regimes, and the dominant mechanism governing the transition of regimes are described. A combined suppression parameter is developed and can be used to enhance or suppress the cavitation intensity considering the influence of temperature.
297

Studies of Thin Liquid Films Confined between Hydrophobic Surfaces

Li, Zuoli 12 December 2012 (has links)
Surface force measurements previously conducted with thiolated gold surfaces showed a decrease in excess film entropy (£GSf), suggesting that hydrophobic force originates from changes in the structure of the medium (water) confined between hydrophobic surfaces. As a follow-up to the previous study, surface force measurements have been conducted using an atomic force microscope (AFM) with hydrophobic silica surfaces at temperatures in the range of 10 to 40¢XC. The silica sphere and silica plate were treated by both chemisorption of octadecyltrichlorosilane (OTS) and physical adsorption of octadecyltrimethylammonium chloride (C18TACl). A thermodynamic analysis of the results show similar results for both of the samples, that both ""Sf and excess film enthalpy ("Hf) become more negative with decreasing thickness of the water layer between the hydrophobic surfaces and decreasing temperature. |"Hf | > |T"Sf| represents a necessary condition for the excess free energy change ("Gf ) to be negative and the hydrophobic interaction to be attractive. Thus, the results obtained with both the silylated and C18TACl-adosrbed silica surfaces in the present work and the thiolated gold suefaces reported before show hydrophobic forces originate from structural changes in the medium. Thermodynamic analysis of SFA force measurements obtained at various temperatures revealed that "Sf were much more negative in the shorter hydrophobic force ranges than in the longer ranges, indicating a more significant degree of structuring in the water film when the two hydrophobic surfaces are closer together. It is believed that the water molecules in the thin liquid films (TLFs) of water form clusters as a means to reduce their free energy when they cannot form H-bonds to neighboring hydrophobic surfaces. Dissolved gas molecules should enhance the stability of structured cluster due to the van der Waals force between the entrapped gas molecules and the surrounding water molecules1, which may enhance the strength of the hydrophobic force. Weaker long-range attractive forces detected in degassed water than in air-equilibrated water was found in the present work by means of AFM force measurements, supporting the effect of dissolved gas on the structuring of water. At last, temperature effects on hydrophobic interactions measured in ethanol and the thermodynamic analysis revealed similar results as those found in water, indicating that the hydrophobic force originates from H-bond propagated structuring in the mediums. / Ph. D.
298

Surface Forces in Thin Liquid Films of H-Bonding Liquids Confined between Hydrophobic Surfaces

Xia, Zhenbo 30 November 2015 (has links)
Hydrophobic interaction plays an important role in biology, daily lives, and a variety of industrial processes such as flotation. While the mechanisms of hydrophobic interactions at molecular scale, as in self-assembly and micellization, is relatively well understood, the mechanisms of macroscopic hydrophobic interactions have been controversial. It is, therefore, the objective of the present work to study the mechanisms of interactions between macroscopic hydrophobic surfaces in H-bonding liquids, including water, ethanol, and water-ethanol mixtures. The first part of the present study involves the measurement of the hydrophobic forces in the thin liquid films (TLFs) confined between two identical hydrophobic surfaces of contact angle 95.3o using an atomic force microscope (AFM). The measurements are conducted in pure water, pure ethanol, and ethanol-water mixtures of varying mole fractions. The results show that strong attractive forces, not considered in the classical DLVO theory, are present in the colloid films formed with all of the H-bonding liquids tested. When an H-bonding liquid is confined between two hydrophobic surfaces, the vicinal liquid molecules form clusters in the TLFs and give rise to an attractive force. The cluster formation is a way to minimize free energy for the molecules denied of H-bonding with the substrates. Thus, solvophobic forces are the result of the antipathy between the CH2- and CH3-coated surface and H-bonding liquid confined in the film. A thermodynamic analysis of the solvophobic forces measured at different temperatures support this mechanism, in which solvophobic interactions entail decreases in the excess film enthalpy and entropy. The former represents the energy gained by building clusters, while the latter represents loss of entropy due to structure building. Thus, hydrophobic interaction may be a subset of solvophobic interaction. The solvophobic forces are strongest in pure water and pure ethanol, and decrease when one is added to the other. Adding a very small amount of ethanol to water sharply reduced the solvophobic force due to the adsorption of the former with an inverse orientation. An exposure of the OH-group toward the aqueous phase decreases the antipathy between the surface and H-bonding liquid and hence causes the hydrophobic (or solvophobic) forces to decrease. The second part of the study involves the measurement of the hydrophobic forces in the wetting films of water using the force apparatus for deformable surfaces (FADS). This new instrument recently developed at Virginia Tech is designed to monitor the deformation of bubbles to determine the surface forces in wetting films. In effect, an air bubble is used a force sensor. The measurements have been conducted with gold, chalcopyrite, and galena as substrates. The results obtained with all three minerals show that hydrophobic force increases with increasing water contact angle, suggesting that hydrophobic forces are inherent properties of hydrophobic surfaces rather than created from artifacts such as preexisting nanobubbles and/or cavitation. A utility of the intrinsic relationship between hydrophobic force and contact angle is to predict flotation kinetics from the hydrophobicity of the minerals of interest. / Ph. D.
299

Thermoeconomic Modeling and Parametric Study of Hybrid Solid Oxide Fuel Cell – Gas Turbine – Steam Turbine Power Plants Ranging from 1.5 MWe to 10 MWe

Arsalis, Alexandros 15 February 2007 (has links)
Detailed thermodynamic, kinetic, geometric, and cost models are developed, implemented, and validated for the synthesis/design and operational analysis of hybrid solid oxide fuel cell (SOFC) – gas turbine (GT) – steam turbine (ST) systems ranging in size from 1.5 MWe to 10 MWe. The fuel cell model used in this thesis is based on a tubular Siemens-Westinghouse-type SOFC, which is integrated with a gas turbine and a heat recovery steam generator (HRSG) integrated in turn with a steam turbine cycle. The SOFC/GT subsystem is based on previous work done by Francesco Calise during his doctoral research (Calise, 2005). In that work, a HRSG is not used. Instead, the gas turbine exhaust is used by a number of heat exchangers to preheat the air and fuel entering the fuel cell and to provide energy for district heating. The current work considers instead the possible benefits of using the exhaust gases in an HRSG in order to produce steam which drives a steam turbine for additional power output. Four different steam turbine cycles are considered in this M.S. thesis work: a single-pressure, a dual-pressure, a triple-pressure, and a triple-pressure with reheat. The models have been developed to function both at design (full load) and off-design (partial load) conditions. In addition, different solid oxide fuel cell sizes are examined to assure a proper selection of SOFC size based on efficiency or cost. The thermoeconomic analysis includes cost functions developed specifically for the different system and component sizes (capacities) analyzed. A parametric study is used to determine the most viable system/component syntheses/designs based on maximizing total system efficiency or minimizing total system life cycle cost. / Master of Science
300

Coformer Replacement as an Indicator for Thermodynamic Instability of Cocrystals: Competitive Transformation of Caffeine:Dicarboxylic Acid

Alsirawan, M.H.D. Bashir, Vangala, Venu R., Kendrick, John, Leusen, Frank J.J., Paradkar, Anant R 11 May 2016 (has links)
Yes / The thermodynamic stability of caffeine (CA) cocrystals with dicarboxylic acids (DAs) as coformers was investigated in the presence of a range of structurally related dicarboxylic acids (SRDs). Two experimental conditions (slurry and dry-grinding) were studied for mixing the cocrystal and the SRD additive. The additives oxalic, malonic and glutaric acid led to the replacement of the acid coformer for certain cocrystals. Interestingly, a change in stoichiometry was observed for the CA:maleic acid system. A stability order among the cocrystals was established depending on their tendency to replace the coformer. To understand the factors controlling the relative stabilities, lattice energies were calculated using dispersion corrected Density Functional Theory (DFT). Gibbs free energy changes were calculated from experimental solubilities. The observed stability order corroborated well with lattice energy and Gibbs free energy computations.

Page generated in 0.0615 seconds