Spelling suggestions: "subject:"thermodynamic stochastique""
1 |
Stochastic thermodynamics of transport phenomena and reactive systems: an extended local equilibrium approach / Thermodynamique stochastique des phénomènes de transport et des systèmes réactifs :l'approche de l'équilibre local étenduDerivaux, Jean-Francois 03 July 2020 (has links) (PDF)
Avec les progrès de la technologie, il est désormais devenu possible de manipuler des faibles quantités d’objets nanométriques, voire des objets uniques. Observer une réaction chimique de quelques centaines de molécules sur des catalyseurs, étudier le travail exercé lors du déploiement d’un brin d’ADN unique ou mesurer la chaleur émise par un unique électron dans un circuit électrique constituent aujourd’hui des actes expérimentaux courants. Cependant, à cette échelle, le caractère aléatoire des processus physiques étudiés se fait plus fortement ressentir. Développer une théorie thermodynamique à ces échelles nécessite d'y inclure de manière exhaustive ces fluctuations.Ces préoccupations et les résultats expérimentaux et théoriques associés ont mené à l’émergence de ce que l’on appelle aujourd’hui la thermodynamique stochastique. Cette thèse se propose de développer une approche originale à la thermodynamique stochastique, basée sur une extension de l'hypothèse d'équilibre local aux variables fluctuantes d'un système. Cette théorie offre de nouvelles définitions des grandeurs thermodynamiques stochastiques, dont l'évolution est donnée par des équations différentielles stochastiques (EDS).Nous avons choisi d'étudier cette théorie à travers des modèles simplifiés de phénomènes physiques variés; transport (diffusif) de chaleur ou de masse, transport couplé (comme la thermodiffusion), ainsi que des modèles de réactions chimiques linéaires et non-linéaires. A travers ces exemples, nous avons proposé des versions stochastiques de plusieurs grandeurs thermodynamiques d'intérêt. Une large part de cette thèse est dévolue à l'entropie et aux différents termes apparaissant dans son bilan (flux d'entropie, production d'entropie ou dissipation). D'autres exemples incluent l'énergie libre d'Helmholtz, la production d'entropie d'excès, ou encore les efficacités thermodynamiques dans le transport couplé.A l'aide de cette théorie, nous avons étudié les propriétés statistiques de ces différentes grandeurs, et plus particulièrement l'effet des contraintes thermodynamiques ainsi que les propriétés cinétiques du modèle sur celles-là. Dans un premier temps, nous montrons comment l'état thermodynamique d'un système (à l' équilibre ou hors d'équilibre) contraint la forme de la distribution de la production d'entropie. Au-delà de la production d'entropie, cette contrainte apparaît également pour d'autres quantités, comme l'énergie libre d'Helmholtz ou la production d'entropie d'excès. Nous montrons ensuite comment des paramètres de contrôle extérieurs peuvent induire des bimodalités dans les distributions d'efficacités stochastiques.Les non-linéarités de la cinétique peuvent également se répercuter sur la thermodynamique stochastique. En utilisant un modèle non-linéaire de réaction chimique, le modèle de Schlögl, nous avons calculé la dissipation moyenne, non-nulle, engendrée par les fluctuations du système. Les non-linéarités offrent aussi la possibilité de produire des bifurcations dans le système. Les différentes propriétés statistiques (moments et distributions) de la production d'entropie ont été étudiées à différents points avant, pendant et après la bifurcation dans le modèle de Schlögl.Ces nombreuses propriétés ont été étudiées via des développements analytiques supportés par des simulations numériques des EDS du système. Nous avons ainsi pu montrer la fine connexion existant entre les équations cinétiques du système, les contraintes thermodynamiques et les propriétés statistiques des fluctuations de différentes grandeurs thermodynamiques stochastiques. / Over the last decades, nanotechnology has experienced great steps forwards, opening new ways to manipulate micro- and nanosystems. These advances motivated the development of a thermodynamic theory for such systems, taking fully into account the unavoidable fluctuations appearing at that scale. This ultimately leads to an ensemble of experimental and theoretical results forming the emergent field of stochastic thermodynamics. In this thesis, we propose an original theoretical approach to stochastic thermodynamics, based on the extension of the local equilibrium hypothesis (LEH) to fluctuating variables in small systems. The approach provides new definitions of stochastic thermodynamic quantities, whose evolution is given by stochastic differential equations (SDEs).We applied this new formalism to a diverse range of systems: heat or mass diffusive transport, coupled transport phenomena (thermodiffusion), and linear or non-linear chemical systems. In each model, we used our theory to define key stochastic thermodynamic quantities. A great emphasis has been put on entropy and the different contributions to its evolution (entropy flux and entropy production) throughout this thesis. Other examples include also the stochastic Helmholtz energy, stochastic excess entropy production and stochastic efficiencies in coupled transport. We investigated how the statistical properties of these quantities are affected by external thermodynamic constraints and by the kinetics of the system. We first studied how the thermodynamic state of the system (equilibrium \textit{vs.} non-equilibrium) strongly impacts the distribution of entropy production. We then extended those findings to other related quantities, such as the Helmholtz free energy and excess entropy production. We also analysed how some external control parameters could lead to bimodality in stochastic efficiencies distributions.In addition, non-linearities affect stochastic thermodynamics quantities in different ways. Using the example of the Schlögl chemical model, we computed the average dissipation of the fluctuations in a non-linear system. Such systems can also undergo a bifurcation, and we studied how the moments and the distribution of entropy production change while crossing the critical point.All these properties were investigated with theoretical analyses and supported by numerical simulations of the SDEs describing the system. It allows us to show that properties of the evolution equations and external constraints could strongly reflect in the statistical properties of stochastic thermodynamic quantities. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
2 |
Thermodynamique et fluctuations des petites machines / Thermodynamics and fluctuations of small machinesVroylandt, Hadrien 04 September 2018 (has links)
Les petites machines, comme les moteurs moléculaires ou les particules actives, fonctionnent dans un environnement fortement fluctuant qui affecte leur efficacité ou leur puissance. L'objectif de cette thèse est de décrire les petites machines à l'aide de la thermodynamique stochastique et de la théorie des grandes déviations. En reliant localement puis globalement les courants aux forces thermodynamiques, on introduit une matrice de conductance hors d'équilibre, qui généralise la matrice d'Onsager pour un système stationnaire hors d'équilibre. Cela permet de majorer l'efficacité des machines par une fonction universelle qui ne dépend que du degré de couplage entre les courants d'entrée et de sortie. On obtient aussi de nouvelles relations générales entre puissance et efficacité. Du point de vue des fluctuations, la matrice de conductance hors d'équilibre est reliée à une borne quadratique pour les fonctions de grande déviation des courants. Cette borne permet d'obtenir des bornes pour les fonctions de grande déviation de l'efficacité, mais aussi de revisiter le théorème de fluctuation-dissipation comme une inégalité dans le cas des systèmes loin de l'équilibre. Pour terminer, on étudie l'effet d'une brisure d'ergodicité sur les fluctuations d'observables comme l'activité, les courants ou l'efficacité. En particulier, on calcule la fonction de grande déviation de l'efficacité pour un ensemble de nanomachines en interaction pour lesquelles un couplage fort et une brisure d'ergodicité apparaissent à la limite thermodynamique. / Small machines -- like molecular motors or active particles -- operate in highly fluctuating environments that affect their efficiency and power. This thesis aims at describing small machines using stochastic thermodynamics and large deviation theory. By relating mean currents to thermodynamic forces, locally first and then at the global level, we introduce the non-equilibrium conductance matrix that generalizes the Onsager matrix for stationary non-equilibrium systems. We use it to bound machine efficiency by a universal function depending only on the degree of coupling between input and output currents and to find new general power-efficiency trade-offs. On the fluctuations side, the non-equilibrium conductance matrix can be used to find a quadratic bound on the large deviation function of currents. This enables to revisit the fluctuation-dissipation theorem as an inequality when dealing with far-from-equilibrium systems, but also to derive bounds on the efficiency large deviation function. Finally, we study the effects of ergodicity breaking on the fluctuations of observables like activity, currents or efficiency. In particular, we derive the efficiency large deviation function for a model of interacting nanomachines, for which tight coupling and ergodicity breaking emerge in the thermodynamic limit.
|
3 |
Le rôle mécanique de " power stroke " dans la contraction musculaireSheshka, Raman 21 September 2012 (has links) (PDF)
Cette thèse est consacrée à la modélisation du fonctionnement mécanique de l'interaction myosine II / actine, qui est responsable de la génération de force active dans les muscles squelettiques à l'échelle nanomérique. Les unités contractiles du muscle contiennent les filaments d'actine et de myosine, les derniers sont formés par un assemblage des myosines II. La myosine II est un moteur moléculaire qui s'attache et se détache périodiquement au filament d'actine en présence d'ATP. Afin de comprendre le phénomène de la contraction musculaire d'un point de vue mécanique, nous suivons l'approche développée par la communauté de cliquets Browniens, qui remplace l'interprétation chimique traditionnelle de génération de force active par une étude de la dynamique de Langevin des systèmes mécaniques avec des paysages énergétiques bien définis. Nous mettons l'accent sur le rôle du changement conformationnel, ou " power stroke ", dans le fonctionnement de la myosine II. Nous identifions le "power stroke" comme le principal moteur de la contractilité, ce qui reflète la réalité biologique. Nous proposons un modèle mécanique innovant et, en mettant l'accent sur le rôle actif de " power stroke ", nous établissons un lien entre les moteurs processifs et nonprocessifs. Dans cette thèse, nous présentons les premiers exemples de modèles de moteur moléculaire nonprocessif actionnés exclusivement par "power stroke " et exploitant le phénomène de la résonance stochastique.
|
4 |
Fluctuations and Interactions of Brownian particles in multiple Optical Traps / Interactions et fluctuations de particules browniennes dans un réseau de pièges optiquesBérut, Antoine 07 July 2015 (has links)
Nous avons étudié expérimentalement les fluctuations de micro-particules browniennes piégées à l'aide de pinces optiques dans un réseau de puits de potentiels voisins. Nous donnons un descriptif général du montage expérimental, puis détaillons quatre utilisations différentes du système. Nous avons d'abord utilisé une unique particule dans un double puits de potentiel pour modéliser un système mémoire à deux niveaux, avec lequel nous avons vérifié le principe de Landauer sur le coût minimal en énergie pour l'effacement d'un bit d'information. Nous avons également appliqué une version détaillée d'un théorème de fluctuation à la procédure d'effacement de l'information pour retrouver la limite énergétique attendue. Nous avons ensuite étudié l'interaction hydrodynamique entre deux particules dont l'une est soumise à une température effective. Nous avons montré qu'il n'y a pas de fluctuations anormales lors de la transition sol-gel de la gélatine, contrairement à ce qui avait été observé précédemment, et que ce système ne pouvait donc pas être utilisé pour étudier des températures effectives. En revanche, nous avons montré que l'ajout d'un forçage aléatoire bien choisi sur la position d'un piège créait une température effective. Nous avons montré que le forçage d'une des particules résultait en une corrélation instantanée entre les mouvements des deux particules, et s'accompagnait d'un échange de chaleur de la particule virtuellement chaude à la particule froide en équilibre avec le bain thermique. Nous avons obtenu un bon accord entre les données expérimentales et les prédictions d'un modèle de couplage hydrodynamique. Enfin, nous décrivons l'utilisation de canaux micro-fluidiques pour réaliser un écoulement cisaillé à l'échelle micrométrique, et nous discutons de la possibilité d'interpréter un cisaillement en terme de température effective en testant une relation de fluctuation-dissipation. / We experimentally study the fluctuations of Brownian micro-particles trapped with optical tweezers arranged in various spatial configurations. We give a general description of the set-up and detail four different experiments we conducted. We first use a single particle in a double-well potential to model a two-state memory system. We verify the Landauer principle on the minimal energetic cost to erase one bit of information, and we use a detailed version of a fluctuation theorem to retrieve the expected energetic bound. We then use two particles in two different traps to study the hydrodynamic interactions between two systems kept at different effective temperatures. Contrary to what was previously observed, we show that the sol-gel transition of gelatine does not provide any anomalous fluctuations for the trapped particle when the sample is quenched below gelification temperature. However, we show that an effective temperature is created when a well chosen random noise is added on one trap position. We demonstrate that the random forcing on one particle induces an instantaneous correlation between the two particles motions, and an energy exchange from the virtually hot particle to the cold one, which is in equilibrium with the thermal bath. We show a good agreement between the experimental data and the predictions from an hydrodynamic coupling model. Finally, we describe the use of micro-fluidic channels to create a shear flow at the micron size, and we discuss the possibility to interpret the force due to the shear-flow in terms of an effective temperature by testing a fluctuation-dissipation relation.
|
Page generated in 0.0977 seconds