• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 30
  • 29
  • 24
  • 15
  • 9
  • 8
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 267
  • 62
  • 41
  • 25
  • 18
  • 17
  • 17
  • 16
  • 16
  • 16
  • 15
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Power and narrative in project management : lessons learned in recognising the importance of phronesis

Rogers, Michael David January 2014 (has links)
A component part of modern project management practice is the ‘lessons learned’ activity that is designed to transfer experience and best practice from one project to another, thus improving the practice of project management. The departure point for this thesis is: If we are learning lessons from our experiences in project management, then why are we not better at managing projects? It is widely cited in most project management literature that 50–70% of all projects fail for one reason or another, a figure that has steadfastly refused to improve over many years. My contention is that the current rational approach to understanding lessons learned in project management, one entrenched in the if–then causality of first-order systems thinking where the nature of movement is a ‘corrective repetition of the past in order to realise an optimal future state’ (Stacey 2011: 301), does not reflect the actual everyday experience of organisational life. I see this as an experience of changing priorities, competing initiatives, unrealistic timescales, evaporation of resources, non-rational decisions based on power relations between actors in the organisations we find ourselves in; and every other manner of challenge that presents itself in modern large commercial organisations. I propose a move away from what I see as the current reductionist view of lessons learned, with its emphasis on objective observation, to one of involved subjective understanding. This is an understanding rooted in the particular experience of the individual acting into the social, an act that necessarily changes both the individual and the social. My contention is that a narrative approach to sense making as first-order abstractions in the activity of lessons learned within project management is what is required if we are to better learn from our experiences. This narrative approach that I have termed ‘thick simplification’ supports learning by enabling the reader of the lessons learned account to situate the ‘lesson learned’ within their own experience through treating the lessons learned as a potential future understanding .This requires a different view of what is going on between people in organisations – one that challenges the current reliance on detached process and recognises the importance of embedded phronesis, the Aristotelian virtue of practical judgement. It is an approach that necessarily ‘focuses attention directly on patterns of human relating, and asks what kind of power relations, ideology and communication they reflect’ (Stacey 2007: 266).
62

Development and Performance Study of Thick Gas Electron Multiplier (THGEM) Based Radiation Detector

Garai, Baishali January 2013 (has links) (PDF)
Radiations can be classified as either ionizing or non-ionizing according to whether it ionizes or does not ionize the medium through which they propagate. X-rays photons and gamma rays are the typical examples of ionizing radiations whereas radiowave, heat or visible light are examples of non ionizing radiations. UV photons have some features of both ionizing and non-ionizing radiation. Both ionizing and non-ionizing radiation can be harmful to living organisms and to the natural environment. Hence the detection and measurement of radiation is very important for the well being of living organisms as well as the natural environment. Not only for safety reasons, have radiation detectors found their applications in various fields including medical physics, nuclear and particle physics, astronomy and homeland security. Industrial sectors that use radiation detection include medical imaging, security and baggage scanning, the nuclear power industry and defense. Gas electron multiplier (GEM) is one of the most successful representatives of gaseous detectors used for UV photon and X-ray photon detection. Recently there is a growing demand for large area photon detectors with sensitivity reaching to the level of single photon. They are used in spectroscopy and imaging in astronomy high energy physics experiments etc. Thick GEM (THGEM) is a mechanical expansion of standard GEM. It has all the necessary requirements needed for large area detector and offers a multiplication factor that permits efficient detection of light. Hence, the development and performance study of THGEM based radiation detector is chosen as the topic of study in the present thesis. The initial part of the thesis contains simulation studies carried out for the understanding the working of the detector and the effect of various design parameters of THGEM for the above said applications. Different steps for the fabrication of THGEM and the technical challenges faced during the process are discussed. In the view of application of the fabricated THGEM for UV photon detection, cesium iodide photocathode is prepared using thin film technology and characterized. The performance of the photocathode under various operating conditions is studied in terms of its photoemission property. The effect of vacuum treatment on the photoemission property of the photocathode exposed to moist air is studied in detail. A major portion of this thesis focuses on maximizing the detection efficiency of the UV photon detector realized using the fabricated THGEM coupled with the cesium iodide photocathode. Simulations are used at different stages to interpret the experimental observations. The electron spectrum obtained from the detector under study was analyzed. The dependence of secondary effect like photon feedback on the operating parameters is also discussed. The last portion of the thesis deals with the application of THGEM as an X-ray detector. The performance is evaluated in terms of the gain and energy resolution achieved. The thesis is organized as follows: Chapter 1 is divided into two sections. Section A gives a general introduction to different types of radiation detectors found in the present day and their working principles. This is followed by discussion about gas ionization based detector and its working principle in detail. A brief literature survey of the different types of micropattern gas detectors is also given in this section. In Section B of this chapter GEM and THGEM are introduced with discussion about their working principle and areas of application. Chapter 2 deals with the simulation study of THGEM undertaken to have a clear understanding of the detector’s working. Section A of this chapter gives an overview of the simulation tools used for the present thesis in particular ANSYS and GARFIELD. Section B presents the results of the simulation study highlighting the effects of different geometrical and operating parameters on the electric field distribution in and around the THGEM aperture. The relevance of the study to the detectors performance is discussed vividly for all the cases. In Chapter 3, the details of the different steps involved in THGEM fabrication are given. Design aspects involved, fabrication of the THGEM using standard PCB technology coupled with photolithography technique are discussed in this chapter. This is followed by an elaborate description of the test setup used for all the performance study. Preface In the view of application of THGEM as a UV photon detector, cesium iodide photocathode was prepared and characterized. Chapter 4 discusses about the CsI photocathode preparation and its characterization for the above said application. Photoemission property of the photocathode was analyzed under various operating parameters. The effect of vacuum treatment on the photocathode performance is a new aspect of this thesis. Its correlation with the microstructure of the film is reported for the first time. Chapter 5 deals with the application of THGEM as a UV photon detector. The study mainly focuses on the improvement of the detection efficiency of the detector. The effect of drift parameters on the electron transfer efficiency and hence on the detection efficiency of the detector is a major contribution of this thesis. There are no literature available which discusses this aspect of a UV photon detector. The experimental study has been supported with simulation results. In addition to the study on detection efficiency, electron spectrum has also been acquired from the UV photon detector. The spectrum has been analyzed under various operating conditions. Discussions about secondary effects like photon feedback prevailing in the detector output are also present in this chapter. Chapter 6 presents the results of THGEM as an X-ray detector. The performance of the detector has been evaluated in terms of the effective gain and energy resolution achieved under different operating conditions. The gain instability with time and its uniformity across the THGEM area are also studied. The effect of drift field on the energy resolution and its correlation with ETE is a new aspect of this work. Chapter 7 summarizes the salient features of the work presented in this thesis. Also the scope of future work based on this thesis is discussed at the end of the chapter.
63

Elektrické vlastnosti tlustovrstvých past měřené v širokém rozsahu teplot / Electrical properties of thick film pastes measured in a wide temperature range

Gajdoš, Jiří January 2016 (has links)
The aim of this master’s thesis is to investigate the electrical properties of various thick-film resistor pastes in a wider temperature range. The thesis mainly focuses on a change in electrical resistance depending on temperatures, which extend to the cryogenic region. To achieve this, there is an overview of the thick-film technology properties, major technological procedures, principles of resistive pastes conductivity, methods of electrical resistance measuring, possible errors in measurement and methods of their minimization. The content of this work is also familiar with the characteristics of a cryogenic station, on this foundation was proposed the measurement procedure and created thick-film circuits for this station. After measurement in the interval 10 K to 350 K, there are subsequently evaluated the data and explains the principles of the conductivity of used pastes.
64

Ein neues Konzept zur Modellierung der Positronenemitter-Produktion bei der Partikeltherapie

Priegnitz, Marlen 08 May 2013 (has links) (PDF)
Eine der drei Säulen der Krebsbehandlung ist die Strahlentherapie. Einer der neuesten Ansätze hierbei ist die Bestrahlung mit Ionen, zurzeit insbesondere Protonen und Kohlenstoffionen. Diese Hochpräzisionstherapie erfordert ein hohes Maß an Kontrolle, da die applizierte Dosisverteilung sehr empfindlich von Dichteveränderungen im durchstrahlten Gewebe abhängt. Das bisher einzige klinisch eingesetzte Verfahren zur in vivo Überwachung der Dosisapplikation bei Ionenbestrahlungen ist die Positronen-Emissions-Tomographie (PET). Sie ermöglicht eine Verifikation der Teilchenreichweite sowie der Lage des Bestrahlungsfeldes. Die mit der PET-Methode gemessene Aktivitätsverteilung lässt sich jedoch nicht direkt mit der geplanten Dosisverteilung vergleichen. Daher ist eine Vorherberechnung der erwarteten Aktivitätsverteilung auf der Grundlage des Bestrahlungsplanes notwendig, welche dann mit der Messung verglichen wird und eine qualitative Beurteilung der Bestrahlung ermöglicht. Die Vorherberechnung der erwarteten Aktivitätsverteilung erfordert bislang die Kenntnis einer Vielzahl von Wirkungsquerschnitten. Nur für wenige dieser Wirkungsquerschnitte liegen jedoch Messdaten im benötigten Energiebereich und mit ausreichender Genauigkeit vor. Daher verwenden viele Monte-Carlo-Simulationen intrinsische Kernmodelle oder semi-empirische Modellierungen, die häufig eine unzureichende Genauigkeit aufweisen. In Fachkreisen ist bisher noch nicht geklärt, welches die optimale Ionensorte für die Tumortherapie ist. Insbesondere Lithiumionen weisen aufgrund ihrer physikalischen und radiobiologischen Eigenschaften ein großes Potenzial auf. Auch für Bestrahlungen mit diesen Ionen ist ein PET-Monitoring der Therapie erstrebenswert. In der vorliegenden Arbeit wird zunächst die Anwendbarkeit der Reichweite-Verifikation mittels PET bei Bestrahlung mit Lithiumionen gezeigt. Des Weiteren wird ein Konzept zur Modellierung der Positronenemitter-Verteilung ohne Kenntnis der Wirkungsquerschnitte entwickelt. Diese Vorhersage beruht auf in Referenzmaterialien (Wasser, Graphit und Polyethylen) gemessenen tiefenabhängigen Positronenemitter-Yields, mit welchen durch geeignete Linearkombination die Verteilung der Positronenemitter in beliebigen Materialien bekannter Stöchiometrie vorausberechnet werden kann. Die Anwendbarkeit des Yield-Konzeptes wird gezeigt für Lithium- und Kohlenstoffbestrahlungen homogener Polymethylmethacrylat (PMMA) Targets sowie verschiedener inhomogener Targets.
65

Thick brain slice cultures and a custom-fabricated multiphoton imaging system: progress towards development of a 3D hybrot model

Rambani, Komal 11 January 2007 (has links)
Development of a three dimensional (3D) HYBROT model with targeted in vivo like intact cellular circuitry in thick brain slices for multi-site stimulation and recording will provide a useful in vitro model to study neuronal dynamics at network level. In order to make this in vitro model feasible, we need to develop several associated technologies. These technologies include development of a thick organotypic brain slice culturing method, a three dimensional (3D) micro-fluidic multielectrode Neural Interface system (µNIS) and the associated electronic interfaces for stimulation and recording of/from tissue, development of targeted stimulation patterns for closed-loop interaction with a robotic body, and a deep-tissue non-invasive imaging system. To make progress towards this goal, I undertook two projects: (i) to develop a method to culture thick organotypic brain slices, and (ii) construct a multiphoton imaging system that allows long-term and deep-tissue imaging of two dimensional and three dimensional cultures. Organotypic brain slices preserve cytoarchitecture of the brain. Therefore, they make more a realistic reduced model for various network level investigations. However, current culturing methods are not successful for culturing thick brain slices due to limited supply of nutrients and oxygen to inner layers of the culture. We developed a forced-convection based perfusion method to culture viable 700µm thick brain slices. Multiphoton microscopy is ideal for imaging living 2D or 3D cultures at submicron resolution. We successfully fabricated a custom-designed high efficiency multiphoton microscope that has the desired flexibility to perform experiments using multiple technologies simultaneously. This microscope was used successfully for 3D and time-lapse imaging. Together these projects have contributed towards the progress of development of a 3D HYBROT. ----- 3D Hybrot: A hybrid system of a brain slice culture embodied with a robotic body.
66

Návrh a realizace struktur s vnořenými komponenty / Design and Realization of Structures with Embeded Components

Němec, Tomáš January 2011 (has links)
The master thesis deals with multilayer structures and thick film technology. The main goal of this work is measure basic electric features of structures realized with thick film technology. The results will make possible more accurate design of these structures.
67

Reducing signal coupling and crosstalk in monolithic, mixed-signal integrated circuits

Clewell, Matthew John January 1900 (has links)
Master of Science / Department of Electrical Engineering / William B. Kuhn / Designers of mixed-signal systems must understand coupling mechanisms at the system, PC board, package and integrated circuit levels to control crosstalk, and thereby minimize degradation of system performance. This research examines coupling mechanisms in a RF-targeted high-resistivity partially-depleted Silicon-on-Insulator (SOI) IC process and applying similar coupling mitigation strategies from higher levels of design, proposes techniques to reduce coupling between sub-circuits on-chip. A series of test structures was fabricated with the goal of understanding and reducing the electric and magnetic field coupling at frequencies up to C-Band. Electric field coupling through the active-layer and substrate of the SOI wafer is compared for a variety of isolation methods including use of deep-trench surrounds, blocking channel-stopper implant, blocking metal-fill layers and using substrate contact guard-rings. Magnetic coupling is examined for on-chip inductors utilizing counter-winding techniques, using metal shields above noisy circuits, and through the relationship between separation and the coupling coefficient. Finally, coupling between bond pads employing the most effective electric field isolation strategies is examined. Lumped element circuit models are developed to show how different coupling mitigation strategies perform. Major conclusions relative to substrate coupling are 1) substrates with resistivity 1 kΩ·cm or greater act largely as a high-K insulators at sufficiently high frequency, 2) compared to capacitive coupling paths through the substrate, coupling through metal-fill has little effect and 3) the use of substrate contact guard-rings in multi-ground domain designs can result in significant coupling between domains if proper isolation strategies such as the use of deep-trench surrounds are not employed. The electric field coupling, in general, is strongly dependent on the impedance of the active-layer and frequency, with isolation exceeding 80 dB below 100 MHz and relatively high coupling values of 40 dB or more at upper S-band frequencies, depending on the geometries and mitigation strategy used. Magnetic coupling was found to be a strong function of circuit separation and the height of metal shields above the circuits. Finally, bond pads utilizing substrate contact guard-rings resulted in the highest degree of isolation and the lowest pad load capacitance of the methods tested.
68

X-ray line transfer in rapidly expanding laser-produced plasmas

Patel, Pravesh K. January 1998 (has links)
No description available.
69

Evaluation of carbon blacks and binders in polymer thick film resistors

Haria, Niraj January 2005 (has links)
This objective of this project is to develop an understanding of the ink and its interaction with substrate of Penny & Giles controls Ltd's conductive plastic potentiometers, so as to develop alternate ink, substrate and processing methods. Conductive plastic potentiometers comprises, a track containing polymer binder and carbon black, printed on a base plastic substrate. The objectives have to take into account the performance ofthe potentiometers, which are to be improved or maintained. The first stage of the project was concerned with investigating the properties of the carbon black used in the inks, which have a major effect on the performance of the potentiometers. Ten different carbon blacks with different properties were selected. The carbon blacks properties for most of these were characterised by techniques that included transmission electron microscopy, x-ray photoelectron spectroscopy, differential scanning calorimetry, laser induced mass spectrometry and the scanning electron microscope. Inks were made with most of individual carbon blacks, and then tracks were produced on the diallyl phthalate plastic substrate. The electric resistance of these tracks was measured allowing the effect of carbon black properties on performance of the track to be studied. Various carbon black were found to provide similar performance to the Vegetabke MR842N, carbon black used currently. The next stage was the investigation of effect of binder on the performance of resistor using the same techniques as used in the first stage so that comparison could be made with the current binder. A phenolic binder was used and again showed similar properties to the DAIP binder used currently
70

Resolved stellar populations of thick disks in galaxies beyond the local group

Buhler, Sarah January 2011 (has links)
In this thesis I present an investigation into the presence, nature and origin of the thick disk component in late-type galaxies. I use ground-based wide-field observations to study two edge-on low-mass galaxies in the Local Universe: NGC 4244 and NGC 55. The large field-of-view of the ground-based data enables me to inspect the radial and vertical structure of each galaxy. The vertical profiles are studied up to larger distances fromthemid-plane than in any previous study and the presence of a second disk component beyond the thin disk with a larger scale height is revealed for both galaxies. The high-quality data allows me to carry out stellar population and metallicity studies for stars above and below the plane. Furthermore, direct comparisons with two simulated low-mass galaxies provided by the Preston group at the University of Central Lancashire are carried out. By putting the results for NGC 4244 and NGC 55 into context with the thick disk properties from these simulations and from the literature, the most likely thick disk formation scenarios can be pointed out. The bulgeless low-mass systemNGC 4244 lies at a distance of 4.4 Mpc and is studied using V- and I-band wide-field images taken with Suprime-Cam on the Subaru telescope, Hawaii. The extra-planar regions of NGC 4244 show the presence of a large population of Red Giant Branch (RGB) stars and some Asymptotic Giant Branch (AGB) stars. The best strategy to study the presence and structure of a thick disk component is to use the vertical diffuse light profiles in the crowded central regions and RGB star counts in the sparser and sky background dominated outskirts. The profiles show evidence for the presence of a sparsely populated second structural component beyond ∼ 2 kpc above and below the mid-plane. The profiles are fitted with a twodisk model, where each disk is approximated by an isothermal, self-gravitating sheet. A Bayesian model comparison confirms the need for a second disk component in the profile fit. Furthermore, the AGB profiles are inspected and are found to have a lower scale height than the RGB profiles. Metallicity studies of the RGB population in the thick disk component reveal that the metallicity is much lower than the solar metal-licity. Last, the scale length of the thin disk is quantified from the diffuse light radial profiles. At a distance of 1.9 Mpc the Magellanic type low-mass galaxy NGC 55 is studied using V- and I-band images from the VIsible MultiObject Spectrograph (VIMOS) in imaging mode on the Very Large Telescope (VLT, UT3) on Cerro Paranal, Chile. The very central regions of the galaxy are not covered by the VIMOS pointings so I use additional images from the Curtis-Schmidt telescope on Cerro Tololo. As for NGC 4244, I find that the RGB star count profiles extend to larger scale heights than the AGB profiles. The combined diffuse light + RGB profiles show evidence for a very prominent second disk component beyond ∼ 2 kpc above and below the plane. The metallicity studies of the RGB population show, that there is no trend in themetallicity with height above or below the plane. As for NGC 4244 the metallicity is significantly lower than the solar metallicity. Furthermore, the scale length of the thin and thick disk is derived from the radial profiles. The properties of thick disks in galaxies of all masses is studied by compiling the results fromobserved and simulated galaxies in the literature in addition to the results for NGC 4244, NGC 55 and the two simulated low-mass galaxies provided by the Preston group. By studying the similarities, differences and global trends with mass in the thick disk properties it is possible to confront the thick disk formation models. I find that none of the formation scenarios can be ruled out and even a hybrid scenario is possible.

Page generated in 0.0263 seconds