• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 63
  • 32
  • 19
  • 13
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 316
  • 316
  • 91
  • 73
  • 72
  • 66
  • 65
  • 45
  • 43
  • 42
  • 40
  • 38
  • 36
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Three-Phase Generation Using Reactive Networks

Davenport, Tattiana Karina Coleman 01 March 2015 (has links)
Household appliances utilize single-phase motors to perform everyday jobs whether it is to run a fan in an air conditioner or the compressor in a refrigerator. With the movement of the world going “green” and trying to make everything more efficient, it is a logical step to start with the items that we use every day. This can be done by replacing single-phase motors with three-phase motors in household appliances. Three-phase motors are 14% more efficient than single-phase motors when running at full load and typically cost less over a large range of sizes [1]. One major downside of incorporating three-phase motors in household appliance is that three-phase power is not readily available in homes. With the motor replacement, a single to three-phase converter is necessary to convert the single-phase wall power into the required three-phase input of the motor. One option is active conversion, which uses switches and introduces different stages that produce power loss [2]. An alternative solution is passive conversion that utilizes the resistances within the motor windings along with additional capacitors and inductors, which in theory are lossless. This study focuses on three different single to three-phase passive converters to run both wye and delta-connected three-phase induction motors, and a possible third winding configuration that utilizes one of the three converters. There will be an emphasis on proving the equivalency of two converters, one proposed by Stuart Marinus and Michel Malengret [11] and the other by Otto Smith [12]. Sensitivity analysis is performed to study the effects of variation of torque and converter component tolerances on the system.
12

Bidirectional Three-Phase AC-DC Power Conversion Using DC-DC Converters and a Three-Phase Unfolder

Chen, Weilun Warren 01 December 2017 (has links)
Strategic use of energy storage systems alleviates imbalance between energy generation and consumption. Battery storage of various chemistries is favorable for its relatively high energy density and high charge and discharge rates. Battery voltage is in dc, while the distribution of electricity is still predominantly in ac. To effectively harness the battery energy, a dc-ac inverter is required. A conventional inverter contains two high-frequency switching stages. The battery-interfacing stage provides galvanic isolation and switches at high frequency to minimize the isolation transformer size. The grid-interfacing stage also operates at high frequency to obtain sinusoidal grid currents and the desired power. Negative consequences of high-frequency switching include increased switching loss and the generation of large voltage harmonics that require filtering. This dissertation proposes an alternative two-stage inverter topology aimed at reducing converter size and weight. This is achieved by reducing the number of high-frequency switching stages and associated filter requirements. The grid-interfacing stage is operated at the line frequency, while only the battery-interfacing stage operates at high frequency to shape the line currents and control power flow. The line-frequency operation generates negligible switching loss and minimal current harmonics in the grid-interfacing stage. As a result, the required filter is reduced in size. Hardware designs are performed and compared between the conventional and proposed converters to quantify expected size reduction. Control methods are developed and verified in simulation and experiment to obtain high-quality line currents at all power factors.
13

Effective properties of three-phase electro-magneto-elastic multifunctional composite materials

Lee, Jae Sang 17 February 2005 (has links)
Coupling between the electric field, magnetic field, and strain of composite materials is achieved when electro-elastic (piezoelectric) and magneto-elastic (piezomagnetic) particles are joined by an elastic matrix. Although the matrix is neither piezoelectric nor piezomagnetic, the strain field in the matrix couples the E field of the piezoelectric phase to the B field of the piezomagnetic phase. This three-phase electro-magneto-elastic composite should have greater ductility and formability than a two-phase composite in which E and B are coupled by directly bonding two ceramic materials with no compliant matrix. A finite element analysis and homogenization of a representative volume element is performed to determine the effective electric, magnetic, mechanical, and coupled-field properties of an elastic (epoxy) matrix reinforced with piezoelectric and piezomagnetic fibers as functions of the phase volume fractions, the fiber (or particle) shapes, the fiber arrangements in the unit cell, and the fiber material properties with special emphasis on the symmetry properties of the fibers and the poling directions of the piezoelectric and piezomagnetic fibers. The effective magnetoelectric moduli of this three-phase composite are, however, less than the effective magnetoelectric coefficients of a two-phase piezoelectric/piezomagnetic composite, because the epoxy matrix is not stiff enough to transfer significant strains between the piezomagnetic and piezoelectric fibers.
14

A High-Performance Three-Phase Grid-Connected PV System Based On Multilevel Current Source Inverter

Dash, Prajna Paramita 15 February 2013 (has links)
Current Source Inverter (CSI) topology is gaining acceptance as a competitive alternative for grid interface of renewable energy systems due to its unique and advantageous features. Merits of CSI over the more popular Voltage Source Inverter (VSI) topology have been elaborated on by a number of researchers. However, there is a dearth of quality work in modeling and control of CSI topology interfacing renewable energy resources to the grid. To enrich the study focussing on application of CSI for renewable energy interface, this thesis develops a multilevel structure based on CSI for three-phase grid-connected Photovoltaic (PV) application. In the first part of research, a single-stage CSI interfacing to PV array is developed. The CSI-based PV system is equipped with Maximum Power Point Tracker (MPPT), DC-link current controller, and AC-side current controller. To eliminate the nonlinearity introduced by the PV array, a feed-forward control is introduced in the DC-link current controller. The AC-side current controller is responsible for maintaining unity power factor at the Point of Common Coupling (PCC). To verify the performance of the developed CSI-based PV system, a number of simulation studies are carried out in PSCAD/EMTDC environment. To illustrate the performance of the CSI-based PV system during transients on the grid side, simulation studies are carried out for four kinds of faults. Results obtained from fault studies are highly in favor of CSI topology and provide illustrative evidence for short-circuit current protection capability of the CSI. On the other hand, the VSI-based PV system performs poorly when subjected to similar grid transients. To extend the research on CSI-based PV system further, a multilevel structure based on CSI is developed. The multilevel structure is a parallel combination of $n$ CSI units and capable of producing $2n+1$ levels of current at the terminal of the inverter. Each unit in the multilevel structure has its own MPPT, DC-link current controller. However, on the AC-side a combined current controller is proposed. The design results in a high power rating with reduced number of filters, sensors and controllers. The developed multilevel structure can operate with PV arrays exposed to equal and unequal insolation level. However, when the PV arrays are operating under unequal insolation level, low order harmonics are generated in the sinusoidal current that is injected into the grid. Elimination of these harmonics is performed by implementing a modified control strategy in stationary reference frame that corresponds to the harmonic component that needs to be minimized. The modified control strategy operates in coordination with the existing DC-side and AC-side current controllers, and MPPTs. Therefore, real-time suppression of current harmonics can be ensured. Performance of the multilevel structure is verified by different transient studies.
15

Three phase boundary length and effective diffusivity in modeled sintered composite solid oxide fuel cell electrodes

Metcalfe, Thomas Craig 05 1900 (has links)
Solid oxide fuel cells with graded electrodes consisting of multiple composite layers yield generally lower polarization resistances than single layer composite electrodes. Optimization of the performance of solid oxide fuel cells with graded electrode composition and/or microstructure requires an evaluation of both the three phase boundary length per unit volume and the effective diffusion coefficient in order to provide insight into how these properties vary over the design space. A numerical methodology for studying the three phase boundary length and effective diffusivity in composite electrode layers with controlled properties is developed. A three dimensional solid model of a sintered composite electrode is generated for which the mean particle diameter, composition, and total porosity may be specified as independent variables. The total three phase boundary length for the modeled electrode is calculated and tomographic methods are used to estimate the fraction of this length over which the electrochemical reactions can theoretically occur. Furthermore, the open porosity of the modeled electrode is identified and the effective diffusion coefficient is extracted from the solution of the concentration of the diffusing species within the open porosity. Selected example electrode models are used to illustrate the application of the methods developed, and the resulting connected three phase boundary length and diffusion coefficients are compared. A significant result is the need for thickness-specific effective diffusivity to be determined, rather than the general volume averaged property, for electrodes with porosity between the upper and lower percolation thresholds. As the demand for current increases, more of the connected three phase boundaries become active, and therefore a greater fraction of the electrode layer is utilized for a given geometry, resulting in a higher apparent effective diffusivity compared to the same electrode geometry operating at a lower current. The methods developed in this work may be used within a macroscopic electrode performance model to investigate optimal designs for solid oxide fuel cell electrodes with stepwise graded composition and/or microstructure.
16

A Sensorless Driver with Current Feedback for Three-Phase Brushless DC Fan Motor

Lin, Shih-Wei 18 October 2010 (has links)
The design and implementation of speed control driver which is applied to three-phase brushless DC fan motor are presented in this thesis. In the back-EMF detection circuit, we use digital filter circuits to obtain commutation to overcome the switch noises which are generated by high frequency PWM, without using traditional capacitor filter circuits which need more volume for additional external capacitor. Because the problems of high frequency magnetizing vibration and dispensable power consumption are generated by open-loop fixed frequency PWM speed control approach, closed-loop speed feedback control methods and closed-loop current feedback control methods are adopted to achieve high efficiency and low vibration of the fan motor drivers.
17

Single event kinetic modeling of the hydrocracking of paraffins

Kumar, Hans 15 November 2004 (has links)
A mechanistic kinetic model for the hydrocracking of paraffins based on the single-event kinetics approach has been studied. Several elements of the model have been improved and the parameters of the model have been estimated from experimental data on n-hexadecane hydrocracking. A detailed reaction network of elementary steps has been generated based on the carbenium ion chemistry using the Boolean relation matrices. A total of 49,636 elementary steps are involved in the hydrocracking of n-hexadecane. The rate coefficients of these elementary steps are expressed in terms of a limited number of single event rate coefficients. By virtue of the single event concept, the single event rate coefficients of a given type of elementary steps are independent of the structure of reactant and product. Given their fundamental nature they are also independent of the feedstock composition and the reactor configuration. There is no lumping of components involved in the generation of the reaction network. Partial lumping is introduced only at a later stage of the model development and the lumping is strictly based on the criterion that the individual components in any lump will be in thermodynamic equilibrium. This definition of lumping requires a total of 49 pure components/lumps in the kinetic model for the hydrocracking of n-hexadecane. The "global" rate of reaction of a lump to another lump is expressed using lumping coefficients which account for the transformation of all the components of one lump into the components of another lump through to a given type of elementary steps. The rate expressions thus formulated are inserted into a one-dimensional, three-phase plug flow reactor model. Experimental data have been collected for the hydrocracking of n-hexadecane. The model parameters are estimated by constrained optimization using sequential quadratic programming by minimizing the sum of squares of residuals between experimental and model predicted product profiles. The optimized parameters are finally used for the reactor simulation to study the effect of different process variables on the conversion and product distribution of n-hexadecane hydrocracking. The model is also used to predict the product distribution for the hydrocracking of a heavy paraffinic mixture consisting of C9 to C33 normal paraffins.
18

Effective properties of three-phase electro-magneto-elastic multifunctional composite materials

Lee, Jae Sang 17 February 2005 (has links)
Coupling between the electric field, magnetic field, and strain of composite materials is achieved when electro-elastic (piezoelectric) and magneto-elastic (piezomagnetic) particles are joined by an elastic matrix. Although the matrix is neither piezoelectric nor piezomagnetic, the strain field in the matrix couples the E field of the piezoelectric phase to the B field of the piezomagnetic phase. This three-phase electro-magneto-elastic composite should have greater ductility and formability than a two-phase composite in which E and B are coupled by directly bonding two ceramic materials with no compliant matrix. A finite element analysis and homogenization of a representative volume element is performed to determine the effective electric, magnetic, mechanical, and coupled-field properties of an elastic (epoxy) matrix reinforced with piezoelectric and piezomagnetic fibers as functions of the phase volume fractions, the fiber (or particle) shapes, the fiber arrangements in the unit cell, and the fiber material properties with special emphasis on the symmetry properties of the fibers and the poling directions of the piezoelectric and piezomagnetic fibers. The effective magnetoelectric moduli of this three-phase composite are, however, less than the effective magnetoelectric coefficients of a two-phase piezoelectric/piezomagnetic composite, because the epoxy matrix is not stiff enough to transfer significant strains between the piezomagnetic and piezoelectric fibers.
19

The Application of Outage Management System to Analyze and Improve Phasing Balance of Distribution Feeders

Huang, Ming-yang 06 August 2008 (has links)
Unbalanced operation of distribution feeders not only affects equipment utilization, voltage level and system protection, but it also increases extra energy losses. This leads to a deterioration of service quality, reliability and operation efficiency of a distribution system. This dissertation analyzes the problems of unbalanced three-phase distribution feeders, and offers potential solutions. Due to the voluminous data involved in a distribution system, analyzing the system by retrieving system data from paper maps is tedious and difficult. Thus, this dissertation uses data from the already constructed Outage Management System (OMS) of Taiwan Power Company (Taipower) to support distribution feeder three-phase unbalance analysis. The distribution feeder network was obtained by retrieving the connectivity table and attribute data of distribution components from the database of OMS. The topology process and node reduction were executed to identify the network configuration and to prepare the input data for load flow analysis. The hourly loading of each distribution transformer was derived using data of monthly energy consumption of customers served by each transformer, as retrieved from the Customer Information System (CIS), and the typical daily load patterns of customer classes. By performing three-phase load flow analysis, phase currents and neutral current of each primary trunk line section and each lateral could be calculated. Finally, an expert system is proposed to establish the rephasing strategy of laterals and distribution transformers to improve the imbalance of the three phases of the unbalanced distribution feeders. The heuristic rules adopted by distribution engineers are incorporated in the knowledge base of the expert system in the problem-solving process. The neutral current reduction algorithm is developed to support the inference engine to derive the rephasing strategy to reduce the neutral current of distribution feeder. In doing so, customer service interruption due to unexpected tripping of low energy over current relay (LCO) can be prevented, and furthermore the customer service interruption costs and labor costs to implement the rephasing strategy can be justified by the reduced power loss. To demonstrate the effectiveness of this proposed methodology in improving the three-phase unbalance of the distribution feeders, two actual distribution feeders in the Taipower Fengshan District were selected for computer simulation. After Taipower engineers implement the proposed rephasing strategies, the data of phase currents and neutral current of test feeders were collected from the SCADA system of Distribution Dispatch Control Center (DDCC). By comparing to the neutral current of test feeders before rephasing, it is concluded that the proposed rephasing strategy is effective in achieving three-phase balance of the distribution feeders after executing the rephasing of laterals and distribution transformers.
20

Measurement and modeling of three-phase oil relative permeability

Dehghanpour, Hassan 06 February 2012 (has links)
Relative permeabilities for three-phase flow are commonly predicted from two-phase flow measurements using empirical models. These models are usually tested against available steady state data. However, the oil flow is unsteady state during various production stages such as gas injection after water flood. Accurate measurement of oil permeability([subscript ro]) during unsteady tertiary gas flood is necessary to study macroscopic oil displacement rate under micro scale events including double drainage, coalescence and reconnection, bulk flow and film drainage. We measure the three-phase oil relative permeability by conducting unsteady-state drainage experiments in a 0.8m water-wet sandpack. We find that when starting from capillary-trapped oil, k[subscript ro] starts high and decreases with a small change in oil saturation, and shows a strong dependence on both the flow of water and the water saturation, contrary to most models. The observed flow coupling between water and oil is stronger in three-phase flow than two-phase flow, and cannot be observed in steady-state measurements. The results suggest that the oil is transported through moving gas/oil/water interfaces (form drag) or momentum transport across stationary interfaces (friction drag). We present a simple model of friction drag which compares favorably to the experimental data. We also solve the creeping flow approximation of the Navier-Stokes equation for stable wetting and intermediate layers in the corner of angular capillaries by using a continuity boundary condition at the layer interface. We find significant coupling between the condensed phases and calculate the generalized mobilities by solving co-current and counter-current flow of wetting and intermediate layers. Finally, we present a simple heuristic model for the generalized mobilities as a function of the geometry and viscosity ratio. To identify the key parameter controlling the measured excess oil flow during tertiary gasflood, we also conduct simultaneous water-gas flood tests where we control water relative permeability and let water saturation develop naturally. The measured data and pore scale calculations indicate that viscous coupling can not explain completely the observed flow coupling between oil and water. We conclude that the rate of water saturation decrease, which controls the pore scale mechanisms including double drainage, reconnection, and film drainage significantly influences the rate of oil drainage during tertiary gas flood. Finally, we present a simple heuristic model for oil relative permeability during tertiary gas flood, and also explain how Stone I and saturation-weighted interpolation should be used to predict the permeability of mobilized oil during transient tertiary gasflood. / text

Page generated in 0.0419 seconds