• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 63
  • 32
  • 19
  • 13
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 316
  • 316
  • 91
  • 73
  • 72
  • 66
  • 65
  • 45
  • 43
  • 42
  • 40
  • 38
  • 36
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Three phase boundary length and effective diffusivity in modeled sintered composite solid oxide fuel cell electrodes

Metcalfe, Thomas Craig 05 1900 (has links)
Solid oxide fuel cells with graded electrodes consisting of multiple composite layers yield generally lower polarization resistances than single layer composite electrodes. Optimization of the performance of solid oxide fuel cells with graded electrode composition and/or microstructure requires an evaluation of both the three phase boundary length per unit volume and the effective diffusion coefficient in order to provide insight into how these properties vary over the design space. A numerical methodology for studying the three phase boundary length and effective diffusivity in composite electrode layers with controlled properties is developed. A three dimensional solid model of a sintered composite electrode is generated for which the mean particle diameter, composition, and total porosity may be specified as independent variables. The total three phase boundary length for the modeled electrode is calculated and tomographic methods are used to estimate the fraction of this length over which the electrochemical reactions can theoretically occur. Furthermore, the open porosity of the modeled electrode is identified and the effective diffusion coefficient is extracted from the solution of the concentration of the diffusing species within the open porosity. Selected example electrode models are used to illustrate the application of the methods developed, and the resulting connected three phase boundary length and diffusion coefficients are compared. A significant result is the need for thickness-specific effective diffusivity to be determined, rather than the general volume averaged property, for electrodes with porosity between the upper and lower percolation thresholds. As the demand for current increases, more of the connected three phase boundaries become active, and therefore a greater fraction of the electrode layer is utilized for a given geometry, resulting in a higher apparent effective diffusivity compared to the same electrode geometry operating at a lower current. The methods developed in this work may be used within a macroscopic electrode performance model to investigate optimal designs for solid oxide fuel cell electrodes with stepwise graded composition and/or microstructure.
22

Oxidation synthesis and reaction analysis of a new arranged catalyst support

Samad, Jadid Ettaz Unknown Date
No description available.
23

Three-phase power-factor correction using single-switch and parallel connected switching converters

Chunkag, Viboon January 1995 (has links)
No description available.
24

A High-Performance Three-Phase Grid-Connected PV System Based On Multilevel Current Source Inverter

Dash, Prajna Paramita 15 February 2013 (has links)
Current Source Inverter (CSI) topology is gaining acceptance as a competitive alternative for grid interface of renewable energy systems due to its unique and advantageous features. Merits of CSI over the more popular Voltage Source Inverter (VSI) topology have been elaborated on by a number of researchers. However, there is a dearth of quality work in modeling and control of CSI topology interfacing renewable energy resources to the grid. To enrich the study focussing on application of CSI for renewable energy interface, this thesis develops a multilevel structure based on CSI for three-phase grid-connected Photovoltaic (PV) application. In the first part of research, a single-stage CSI interfacing to PV array is developed. The CSI-based PV system is equipped with Maximum Power Point Tracker (MPPT), DC-link current controller, and AC-side current controller. To eliminate the nonlinearity introduced by the PV array, a feed-forward control is introduced in the DC-link current controller. The AC-side current controller is responsible for maintaining unity power factor at the Point of Common Coupling (PCC). To verify the performance of the developed CSI-based PV system, a number of simulation studies are carried out in PSCAD/EMTDC environment. To illustrate the performance of the CSI-based PV system during transients on the grid side, simulation studies are carried out for four kinds of faults. Results obtained from fault studies are highly in favor of CSI topology and provide illustrative evidence for short-circuit current protection capability of the CSI. On the other hand, the VSI-based PV system performs poorly when subjected to similar grid transients. To extend the research on CSI-based PV system further, a multilevel structure based on CSI is developed. The multilevel structure is a parallel combination of $n$ CSI units and capable of producing $2n+1$ levels of current at the terminal of the inverter. Each unit in the multilevel structure has its own MPPT, DC-link current controller. However, on the AC-side a combined current controller is proposed. The design results in a high power rating with reduced number of filters, sensors and controllers. The developed multilevel structure can operate with PV arrays exposed to equal and unequal insolation level. However, when the PV arrays are operating under unequal insolation level, low order harmonics are generated in the sinusoidal current that is injected into the grid. Elimination of these harmonics is performed by implementing a modified control strategy in stationary reference frame that corresponds to the harmonic component that needs to be minimized. The modified control strategy operates in coordination with the existing DC-side and AC-side current controllers, and MPPTs. Therefore, real-time suppression of current harmonics can be ensured. Performance of the multilevel structure is verified by different transient studies.
25

Oxidation synthesis and reaction analysis of a new arranged catalyst support

Samad, Jadid Ettaz 11 1900 (has links)
In this study, a new arranged catalyst support with distinct open pore morphology has been fabricated via thermal oxidation of an FeCrAl alloy with an aim to address mass transfer limitations that conventional supports have due to their internal porosity. Subsequent characterization tests including, drop shape analysis, X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy revealed that the support formed upon thermal oxidation for 1 hour at 930C, 1 hour at 960C and 2 hours at 990C embodies advantageous support characteristics. Preliminary tests were performed using palladium (active component) deposited on the new support in representative three phase hydrogenation reactions of 2-methyl-3-butyn-2-ol or 2-methyl-3-buten-2-ol. Absence of mass transfer limitations was verified for 2-methyl-3-buten-2-ol hydrogenation at 35-50C, 1200 rpm stirring speed and 0.46 MPa pressure of hydrogen in a 300 ml semi-batch reactor using ethanol as solvent. The study paves the way to the development of arranged catalysts based on FeCrAl alloy fibers for structured reactors. / Chemical Engineering
26

Δυναμική εξομοίωση τριφασικού μετασχηματιστή τύπου πυρήνα με συνδεσμολογία τυλιγμάτων αστέρα(Υ) - αστέρα(Υ) / Simulation of three-phase core transformer when the primary windings are connected in wye and the secondary windings in wye

Ματσούκης, Στράτης 09 March 2011 (has links)
Αντικείμενο της παρούσας διπλωματικής εργασίας είναι η δυναμική εξομοίωση ενός τριφασικού μετασχηματιστή τύπου πυρήνα με συνδεσμολογία τυλιγμάτων Αστέρα(Υ)-Αστέρα(Υ) σε συνθήκες συμμετρικής και ασύμμετρης φόρτισης. Η διαδικασία της εξομοίωσης περιλαμβάνει την κατάστρωση των διαφορικών εξισώσεων που περιγράφουν την λειτουργία του τριφασικού μετασχηματιστή, την ομαδοποίηση τους σε Πίνακες και την ενσωμάτωσή τους στον κώδικα εξομοίωσης. Αρχικά γίνεται μια εισαγωγή στους νόμους του ηλεκτρομαγνητισμού πάνω στους οποίους βασίζεται η λειτουργία των μετασχηματιστών ενώ παρουσιάζονται όλα εκείνα τα μαγνητικά μεγέθη τα οποία θα μας χρησιμεύσουν στην συνέχεια της διπλωματικής.. Στη συνέχεια, και αφού παρατεθεί το αναγκαίο θεωρητικό υπόβαθρο, πραγματοποιείται η ανάλυση του μονοφασικού μετασχηματιστή και αναλύεται λεπτομερώς η λειτουργία του. Πολύτιμη βοήθεια στην ανάλυση αυτή προσφέρεται και από την ανάλυση των μαγνητικών κυκλωμάτων. Το επόμενο βήμα είναι η ανάλυση του τριφασικού μετασχηματιστή μέσω της οποίας εξάγονται οι σχέσεις που περιγράφουν την λειτουργία του. Προσδιορίζεται ο πίνακας Ld ενώ καταστρώνονται οι καταστατικές εξισώσεις και ομαδοποιούνται σε πίνακες. Τέλος, πραγματοποιείται η εξομοίωση του τριφασικού μετασχηματιστή μέσω της οποίας προκύπτουν παρατηρήσεις και συμπεράσματα για την λειτουργία του. / First of all, there is an introduction in the basic principles of electromagnetism. Then, the analysis of the single-phase and three-phase transformer which can help us to derive the state equations. From the analysis of the magnetic core circuit, we can calculate the incremental matrix Ld. The matrix Ld depends on the topology of the magnetic core. Finally, simulation results and conclusions are presented for the three-phase transformer.
27

Three phase boundary length and effective diffusivity in modeled sintered composite solid oxide fuel cell electrodes

Metcalfe, Thomas Craig 05 1900 (has links)
Solid oxide fuel cells with graded electrodes consisting of multiple composite layers yield generally lower polarization resistances than single layer composite electrodes. Optimization of the performance of solid oxide fuel cells with graded electrode composition and/or microstructure requires an evaluation of both the three phase boundary length per unit volume and the effective diffusion coefficient in order to provide insight into how these properties vary over the design space. A numerical methodology for studying the three phase boundary length and effective diffusivity in composite electrode layers with controlled properties is developed. A three dimensional solid model of a sintered composite electrode is generated for which the mean particle diameter, composition, and total porosity may be specified as independent variables. The total three phase boundary length for the modeled electrode is calculated and tomographic methods are used to estimate the fraction of this length over which the electrochemical reactions can theoretically occur. Furthermore, the open porosity of the modeled electrode is identified and the effective diffusion coefficient is extracted from the solution of the concentration of the diffusing species within the open porosity. Selected example electrode models are used to illustrate the application of the methods developed, and the resulting connected three phase boundary length and diffusion coefficients are compared. A significant result is the need for thickness-specific effective diffusivity to be determined, rather than the general volume averaged property, for electrodes with porosity between the upper and lower percolation thresholds. As the demand for current increases, more of the connected three phase boundaries become active, and therefore a greater fraction of the electrode layer is utilized for a given geometry, resulting in a higher apparent effective diffusivity compared to the same electrode geometry operating at a lower current. The methods developed in this work may be used within a macroscopic electrode performance model to investigate optimal designs for solid oxide fuel cell electrodes with stepwise graded composition and/or microstructure. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
28

Study of two and three-phase flows in large diameter horizontal pipelines

Malhotra, Ajay January 1995 (has links)
No description available.
29

Switching Stage Design and Implementation for an Efficient Three-Phase 5kW PWM DC-DC Converter

Urciuoli, Damian 14 August 2003 (has links)
With the development of fuel cell based power systems, the need for more advanced DC-DC power converters has become apparent. In such applications DC-DC converters provide an important link between low voltage fuel cell sources and inverter buses operating at significantly higher voltages. Advancements in converter efficiency, cost reduction, and size reduction are the most necessary. These challenges are formidable, even when considering the improvements made to conventional DC-DC topologies. However, it can be possible to achieve these criteria through the implementation of more advanced topologies. A recently developed efficient three-phase DC-DC topology offers benefits over standard designs. Passive component sizes and output ripple voltage were reduced as a result of an effective boost in switching frequency. Converter output voltage was reached more easily due to an increased transformer voltage boost ratio in addition to the turns ratio. For cost reduction, the converter was designed and built with discrete components instead of more expensive integrated modules. This thesis presents an overview of the three-phase converter, with a detailed focus on the design, implementation, and performance of the switching stage. The functionality of the three-phase topology is covered along with the selection of converter components. Simulation results are shown for both ideal and real converter models. Considerations for the switching device package with respect to circuit board and heat sinking configurations are discussed in support of the selection of an insulated metal substrate (IMS) circuit board. An effective circuit layout designed to minimize parasitic trace inductances as well as provide favorable component positioning is presented. Experimental converter test results are shown and the causes of undesired effects are identified. Switching stage modifications and their results are discussed along with the benefits of proposed future design enhancements. / Master of Science
30

Μελετη και κατασκευή συστήματος μετατροπής ενέργειας σε ηλεκτρική από ανεμογεννήτρια - παραλληλισμός με το δίκτυο των 380 V

Ιωάννου, Χριστάκης 08 January 2013 (has links)
Η παρούσα διπλωματική εργασία πραγματεύεται τη μελέτη και κατασκευή ενός τριφασικού αντιστροφέα και το συγχρονισμό-σύνδεση αυτού με το τριφασικό δίκτυο. Η εργασία εκπονήθηκε στο Εργαστήριο Ηλεκτρομηχανικής Μετατροπής Ενέργειας του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών. Σκοπός της εργασίας αυτής είναι η μελέτη και η κατασκευή ενός τριφασικού αντιστροφέα, ο οποίος θα συνδεθεί με το τριφασικό δίκτυο και θα αποτελέσει μέρος ενός συστήματος με πηγή ενέργειας μία συστοιχία κυψελών καυσίμου (fuel cells) και ενός μετατροπέα ανύψωσης συνεχούς τάσης σε συνεχή, με διαδοχική αγωγή δύο παράλληλων κλάδων (interleaved boost converter). Η είσοδος του τριφασικού αντιστροφέα συνδέεται στην έξοδο του μετατροπέα ανύψωσης συνεχούς τάσης σε συνεχή, με διαδοχική αγωγή δύο παράλληλων κλάδων, ο οποίος τροφοδοτεί τον αντιστροφέα με σταθερή τάση 80 V. Στην έξοδο του αντιστροφέα πρόκειται να συνδεθεί ένα φίλτρο LC για την αποκοπή των υψίσυχνων σημάτων της τάσης και στη συνέχεια ένας τριφασικός μετασχηματιστής, ο οποίος προσφέρει γαλβανική απομόνωση και ανυψώνει την τάση στην επιθυμητή τιμή, που είναι και η τιμή της τάσης του δικτύου. Καταρχάς έγινε θεωρητική μελέτη των ανανεώσιμων πηγών ενέργειας, του τριφασικού αντιστροφέα, του φίλτρου LC, του τριφασικού μετασχηματιστή, καθώς και μεθόδων συγχρονισμού με το δίκτυο. Επίσης έγινε μελέτη με το πρόγραμμα εξομοίωσης MATLAB/Simulink της διασύνδεσης του αντιστροφέα με το δίκτυο. Τέλος ακολούθησε η κατασκευή της διάταξης και η διεξαγωγή πλήθους πειραματικών δοκιμών. / The present diploma thesis deals with the design and manufacture of a three-phase inverter to synchronize and connect to the three-phase grid. This work was developed in the Laboratory of Electromechanical Energy Conversion at the Department of Electrical Engineering and Computer Technology of the School of Engineering in the University of Patras, Greece. The purpose of this thesis is the design and manufacture of a three-phase inverter, which will be connected to the three-phase grid and will be part of a system with source of energy a fuel cell stack and an interleaved boost converter, with two parallel branches. The input of the three-phase inverter is connected to the output of the interleaved boost converter with two parallel branches, which feeds the inverter with a dc voltage of 80 V. The output of the inverter is connected to an LC filter, in order to cut off the high frequency voltage signals and subsequently a three-phase transformer, which provides galvanic isolation and lifts the voltage to the appropriate value, which is the voltage value of the grid. At first a theoretical study of the renewable sources of energy, the three-phase inverter, the LC filter, the three-phase transformer, as well as the methods of synchronization with the grid was made. Study was also made with the simulation program MATLAB/Simulink at the interface of the inverter to the grid. Finally the construction of the device followed and numerous experimental trials were conducted.

Page generated in 0.0474 seconds