121 |
Quality of the Volterra transfer function estimation /Yoo, Hyungsuk, January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 297-303). Available also in a digital version from Dissertation Abstracts.
|
122 |
Monitoring the water content evolution of dikes : Überwachung der Wassergehaltsentwicklung in DeichenRings, Jörg January 2009 (has links) (PDF)
Universität Karlsruhe (TH), Diss., 2008.
|
123 |
Enhancement of the finite difference time domain technique and its application to microwave devices /Sangary, Nagula Tharma. Georgieva, Natalia. January 2003 (has links)
Thesis (Ph.D.)--McMaster University, 2003. / Advisor: Natalia Georgieva. Includes bibliographical references. Also available via World Wide Web.
|
124 |
Unconditionally convergent time domain adaptive and time-frequency techniques for epicyclic gearbox vibrationSchön, Peter Paul. January 2005 (has links)
Thesis (M. Eng.)(Mechanical)--University of Pretoria, 2005. / Includes bibliographical references. Available on the Internet via the World Wide Web.
|
125 |
Distributed Optical Fiber Vibration Sensor Based on Phase-Sensitive Optical Time Domain ReflectometryRen, Meiqi January 2016 (has links)
In this thesis, the work focuses on developing distributed optical fiber vibration sensors based on phase-sensitive optical time domain reflectometry (Φ-OTDR). Three works have been accomplished to improve the performances of Φ-OTDR for distributed vibration sensing. Firstly, Φ-OTDR based on a polarization diversity scheme is demonstrated to mitigate the polarization mismatch effect occurring in traditional systems. A theoretical analysis is performed in different polarization cases corresponding to coherent and polarization diversity detection. Φ-OTDR based polarization diversity shows a great potential in the multi-events sensing application. Two vibration events are simultaneously detected and their signal to noise ratios are improved by 10.9 dB and 8.65 dB, respectively, compared to the results obtained by a conventional coherent scheme.
Intensity fluctuation in a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system caused by stochastic characteristics of Rayleigh backscattering has limited relative vibration strength measurement, which is proportional to dynamic strain. A trace-to-trace correlation coefficient is thus proposed to quantify the Φ-OTDR system stability and a novel approach of measuring the dynamic strain induced by various driving voltages of lead zicronate titanate (PZT) is demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of the fast Fourier transform spectra at fundamental frequency and high-order harmonics based on Bessel functions. Experimental results show high correlation coefficients and good stability of our Φ-OTDR system, as well as the small measurement uncertainty of measured peak values.
To reduce the intra-band noise caused by the finite extinction ratio of optical pulses, Φ-OTDR based on high extinction ratio generation is studied. Two methods are developed for achieving high extinction ratio of optical pulse generation. One of the approaches is to synchronize two cascaded electro-optic modulators to achieve high extinction ratio operation. The other one is to use the nonlinear optical fiber loop mirror as an optical switch to suppress the continuous wave portion of optical pulse. The sensing range of 1.8 km and 8.4 km with corresponding spatial resolution of 0.5 m and 2 m have been demonstrated based on cascaded two electro-optic modulators and nonlinear optical fiber loop mirror setup, respectively.
|
126 |
Signal and data processing for THz imagingBañuelos Saucedo, Miguel Angel January 2014 (has links)
This thesis presents the research made on signal and data processing for THz imaging, with emphasis in noise analysis and tomography in amplitude contrast using a THz time-domain spectrometry system. A THz computerized tomography system was built, tested and characterized. The system is controlled from a personal computer using a program developed ad hoc. Detail is given on the operating principles of the system’s numerous optical and THz components, the design of a computer-based fast lock-in amplifier, the proposal of a local apodization method for reducing spurious oscillations in a THz spectrum, and the use of a parabolic interpolation of integrated signals as a method for estimating THz pulse delay. It is shown that our system can achieve a signal-to-noise ratio of 60 dB in spectrometry tests and 47 dB in tomography tests. Styrofoam phantoms of different shapes and up to 50x60 mm is size are used for analysis. Tomographic images are reconstructed at different frequencies from 0.2 THz to 2.5 THz, showing that volume scattering and edge contrast increase with wavelength. Evidence is given that refractive losses and surface scattering are responsible of high edge contrast in THz tomography images reconstructed in amplitude contrast. A modified Rayleigh roughness factor is proposed to model surface transmission scattering. It is also shown that volume scattering can be modelled by the material’s attenuation coefficient. The use of 4 mm apertures as spatial filters is compared against full beam imaging, and the limitations of Raleigh range are also addressed. It was estimated that for some frequencies between 0.5 THz and 1 THz the Rayleigh range is enough for the tested phantoms. Results on the influence of attenuation and scattering at different THz frequencies can be applied to the development of THz CW imaging systems and as a point of departure for the development of more complex scattering models.
|
127 |
Numerical Modeling of Electromagnetic Scattering in Explosive Granular MediaSundberg, Garth 01 January 2010 (has links)
Terahertz (THz) reflection and transmission spectroscopy is a promising new field with applications in imaging and illicit material detection. One particularly useful application is for the detection of improvised explosive devices (IEDs) which is a favorite weapon of global terrorists. Explosive materials have been shown to have a unique spectral signature in the THz band which can be used to identify the explosives. However, the initial measurements performed on the explosive samples do not account for the modulation of the spectral features by random scattering that will be prevalent with actual samples encountered in applications. The intent of this work is to characterize and quantify the effects of random scattering that may alter the spectral features. Specifically, the effect that a randomly rough surface and granular scattering has on the scattered THz wave (T-Rays) will be investigated and characterized using the Finite-Difference Time-Domain (FDTD) simulation method. The FDTD method is a natural choice for this work as it can handle complicated geometries (i.e., multiple scatterers, arbitrarily rough interfaces, etc.) arbitrary materials (i.e., dispersive media, etc.) and provides broadband frequency data with one simulation pass. First, the effect that the randomly rough surface of the sample explosive has on the extracted spectral signature will be studied using a Monte-Carlo analysis. Then the effect of the complex structure inside the explosive material (the granular scatterers) will be considered. Next, when the physics of the rough surface and granular scattering are understood, a robust method to extract the spectral signature from the reflected T-rays will be developed.
|
128 |
Effect of clay type and clay content on moisture content and bulk soil electrical conductivity as measured using time domain reflectometryLiaghat, Abdolmajid January 1993 (has links)
No description available.
|
129 |
Use of time domain reflectometry to monitor water content and electrical conductivity of saline soilEntus, Jonathan January 2000 (has links)
No description available.
|
130 |
Computation of Electromagnetic Fields in Assemblages of Biological Cells using a Modified Finite-Difference Time-Domain SchemeAbd-Alhameed, Raed, Excell, Peter S., See, Chan H. January 2007 (has links)
Yes / When modeling objects that are small compared with the wavelength, e.g., biological cells at radio frequencies, the standard finite-difference time-domain (FDTD) method requires extremely small time-step sizes, which may lead to excessive computation times. The problem can be overcome by implementing a quasi-static approximate version of FDTD based on transferring the working frequency to a higher frequency and scaling back to the frequency of interest after the field has been computed. An approach to modeling and analysis of biological cells, incorporating a generic lumped-element membrane model, is presented here. Since the external medium of the biological cell is lossy material, a modified Berenger absorbing boundary condition is used to truncate the computation grid. Linear assemblages of cells are investigated and then Floquet periodic boundary conditions are imposed to imitate the effect of periodic replication of the assemblages. Thus, the analysis of a large structure of cells is made more computationally efficient than the modeling of the entire structure. The total fields of the simulated structures are shown to give reasonable and stable results at 900,1800, and 2450 MHz. This method will facilitate deeper investigation of the phenomena in the interaction between electromagnetic fields and biological systems.
|
Page generated in 0.0426 seconds