• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 17
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 69
  • 69
  • 63
  • 23
  • 20
  • 18
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

H.264 Baseline Real-time High Definition Encoder on CELL

Wei, Zhengzhe January 2010 (has links)
In this thesis a H.264 baseline high definition encoder is implemented on CELL processor. The target video sequence is YUV420 1080p at 30 frames per second in our encoder. To meet real-time requirements, a system architecture which reduces DMA requests is designed for large memory accessing. Several key computing kernels: Intra frame encoding, motion estimation searching and entropy coding are designed and ported to CELL processor units. A main challenge is to find a good tradeoff between DMA latency and processing time. The limited 256K bytes on-chip memory of SPE has to be organized efficiently in SIMD way. CAVLC is performed in non-real-time on the PPE.   The experimental results show that our encoder is able to encode I frame in high quality and encode common 1080p video sequences in real-time. With the using of five SPEs and 63KB executable code size, 20.72M cycles are needed to encode one P frame partitions for one SPE. The average PSNR of P frames increases a maximum of 1.52%. In the case of fast speed video sequence, 64x64 search range gets better frame qualities than 16x16 search range and increases only less than two times computing cycles of 16x16. Our results also demonstrate that more potential power of the CELL processor can be utilized in multimedia computing.   The H.264 main profile will be implemented in future phases of this encoder project. Since the platform we use is IBM Full-System Simulator, DMA performance in a real CELL processor is an interesting issue. Real-time entropy coding is another challenge to CELL.
52

Space-Time Coding with Offset Modulations

Nelson, N. Thomas 26 November 2007 (has links) (PDF)
In this dissertation it is shown that the telemetry versions of Feher-patented QPSK (FQPSK-JR) and shaped offset QPSK (SOQPSK-TG) can be interpreted as both cross-correlated, trellis-coded quadrature modulation (XTCQM) and continuous phase modulation (CPM). Based on these representations, both modulations can be detected with near optimal bit error rate performance using a common detector that is formulated as either an XTCQM detector, a traditional CPM detector, or a pulse amplitude modulation (PAM) detector (due to the PAM decomposition of the CPM representations of these modulations). In addition it is shown that the complexity of the XTCQM detector for SOQPSK-TG can be reduced by a factor of 128 with only a 0.2 dB loss in detection efficiency relative to the optimum detector. Three decoders for STC encoded OQPSK are presented. One decoder has a bit error rate performance that matches the SISO case but with much higher complexity than that of the QPSK decoder. A second decoder matches the simplicity of the decoder for STC encoded non-offset QPSK but with a loss of 3 dB relative to the single-input, single-output (SISO) case. A third decoder matches SISO performance with lower complexity than the first one. These results for STC encoded OQPSK are extended to STC SOQPSK. It is shown that the maximum likelihood decoder is not computationally feasible. Two suboptimal decoders based on the STC OQPSK decoders are presented. These decoders have much higher complexity than their OQPSK counterparts, and they provide inferior bit error rate performance. In addition, a least squares decoder for STC encoded SOQPSK is presented which is less complex and has better performance (within 1 dB of the SISO bound) than the previous two decoders. This decoder also handles the differential delays that can occur on aeronautical telemetry channels.
53

The Impact of Channel Estimation Error on Space-Time Block and Trellis Codes in Flat and Frequency Selective Channels

Chi, Xuan 22 July 2003 (has links)
Recently multiple antenna systems have received significant attention from researchers as a means to improve the energy and spectral efficiency of wireless systems. Among many classes of schemes, Space-Time Block codes (STBC) and Space-Time Trellis codes (STTC) have been the subject of many investigations. Both techniques provide a means for combatting the effects of multipath fading without adding much complexity to the receiver. This is especially useful in the downlink of wireless systems. In this thesis we investigate the impact of channel estimation error on the performance of both STBC and STTC. Channel estimation is especially important to consider in multiple antenna systems since (A) for coherent systems there are more channels to estimate due to multiple antennas and (B) the decoupling of data streams relies on correct channel estimation. The latter effect is due to the intentional cross-talk introduced into STBC. / Master of Science
54

Novel transmission schemes for application in two-way cooperative relay wireless communication networks

Mannai, Usama N. January 2014 (has links)
Recently, cooperative relay networks have emerged as an attractive communications technique that can generate a new form of spatial diversity which is known as cooperative diversity, that can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. To achieve cooperative diversity single-antenna terminals in a wireless relay network typically share their antennas to form a virtual antenna array on the basis of their distributed locations. As such, the same diversity gains as in multi-input multi-output systems can be achieved without requiring multiple-antenna terminals. However, there remain technical challenges to maximize the benefit of cooperative communications, e.g. data rate, asynchronous transmission, interference and outage. Therefore, the focus of this thesis is to exploit cooperative relay networks within two-way transmission schemes. Such schemes have the potential to double the data rate as compared to one-way transmission schemes. Firstly, a new approach to two-way cooperative communications via extended distributed orthogonal space-time block coding (E-DOSTBC) based on phase rotation feedback is proposed with four relay nodes. This scheme can achieve full cooperative diversity and full transmission rate in addition to array gain. Then, distributed orthogonal space-time block coding (DOSTBC) is applied within an asynchronous two-way cooperative wireless relay network using two relay nodes. A parallel interference cancelation (PIC) detection scheme with low structural and computational complexity is applied at the terminal nodes in order to overcome the effect of imperfect synchronization among the cooperative relay nodes. Next, a DOSTBC scheme based on cooperative orthogonal frequency division multiplexing (OFDM) type transmission is proposed for flat fading channels which can overcome imperfect synchronization in the network. As such, this technique can effectively cope with the effects of fading and timing errors. Moreover, to increase the end-to-end data rate, a closed-loop EDOSTBC approach using through a three-time slot framework is proposed. A full interference cancelation scheme with OFDM and cyclic prefix type transmission is used in a two-hop cooperative four relay network with asynchronism in the both hops to achieve full data rate and completely cancel the timing error. The topic of outage probability analysis in the context of multi-relay selection for one-way cooperative amplify and forward networks is then considered. Local measurements of the instantaneous channel conditions are used to select the best single and best two relays from a number of available relays. Asymptotical conventional polices are provided to select the best single and two relays from a number of available relays. Finally, the outage probability of a two-way amplify and forward relay network with best and Mth relay selection is analyzed. The relay selection is performed either on the basis of a max-min strategy or one based on maximizing exact end-to-end signal-to-noise ratio. MATLAB and Maple software based simulations are employed throughout the thesis to support the analytical results and assess the performance of new algorithms and methods.
55

Fast Mode Selection Algoritm for H.264 Video Coding

Hållmarker, Ola, Linderoth, Martin January 2005 (has links)
<p>ITU - T and the Moving Picture Expert Group (MPEG) have jointly, under the name of Joint Video Team (JVT), developed a new video coding standard. The standard is called H.264 and is also known as Advanced Video Coding (AVC) or MPEG-4 part 10. Comparisons shows that H.264 greatly outperforms MPEG-2, currently used in DVD and digital TV. H.264 halves the bit rate with equal image quality. The great rate - distortion performance means nevertheless a high computational complexity. Especially on the encoder side.</p><p>Handling of audio and video, e.g. compressing and filtering, is quite complex and requires high performance hardware and software. A video encoder consists of a number of modules that find the best coding parameters. For each macroblock several $modes$ are evaluated in order to achieve optimal coding. The reference implementation of H.264 uses a brute force search for this mode selection which is extremely computational constraining. In order to perform video encoding with satisfactory speed there is an obvious need for reducing the amount of modes that are evaluated.</p><p>This thesis proposes an algorithm which reduces the number of modes and reference frames that are evaluated. The algorithm can be regulated in order to fulfill the demand on quality versus speed. Six times faster encoding can be obtained without loosing perceptual image quality. By allowing some quality degradation the encoding becomes up to 20 times faster.</p>
56

Fast Mode Selection Algoritm for H.264 Video Coding

Hållmarker, Ola, Linderoth, Martin January 2005 (has links)
ITU - T and the Moving Picture Expert Group (MPEG) have jointly, under the name of Joint Video Team (JVT), developed a new video coding standard. The standard is called H.264 and is also known as Advanced Video Coding (AVC) or MPEG-4 part 10. Comparisons shows that H.264 greatly outperforms MPEG-2, currently used in DVD and digital TV. H.264 halves the bit rate with equal image quality. The great rate - distortion performance means nevertheless a high computational complexity. Especially on the encoder side. Handling of audio and video, e.g. compressing and filtering, is quite complex and requires high performance hardware and software. A video encoder consists of a number of modules that find the best coding parameters. For each macroblock several $modes$ are evaluated in order to achieve optimal coding. The reference implementation of H.264 uses a brute force search for this mode selection which is extremely computational constraining. In order to perform video encoding with satisfactory speed there is an obvious need for reducing the amount of modes that are evaluated. This thesis proposes an algorithm which reduces the number of modes and reference frames that are evaluated. The algorithm can be regulated in order to fulfill the demand on quality versus speed. Six times faster encoding can be obtained without loosing perceptual image quality. By allowing some quality degradation the encoding becomes up to 20 times faster.
57

Space-time channel modeling, simulation, and coding

Zajic, Alenka 31 July 2008 (has links)
Several emerging wireless applications require direct transmission between mobile terminals. Examples of these applications are mobile ad-hoc wireless networks, intelligent transportation systems, relay-based cellular networks, and future combat systems. Development of these mobile-to-mobile (M-to-M) systems depends on a good characterization of channel propagation. Another important consideration in modern communication systems is the use of multipath propagation to improve reliability and capacity of wireless systems. This is achieved by employing multiple antennas in multiple-input multiple-output (MIMO) systems and using techniques such as transmit and receive diversity. Considering the demand for high-speed wireless services, MIMO M-to-M systems are the leading candidates for future communication systems. To enable the successful design of MIMO M-to-M systems, our research focuses on modeling of MIMO M-to-M multipath fading channels and on diversity techniques for MIMO systems. Specifically, we propose two-dimensional (2-D) and three-dimensional (3-D) MIMO M-to-M statistical channel models that encompass narrowband and wideband MIMO channel scenarios for macro- and micro-cell environments. Furthermore, we validate the new models against measured data and find very close agreement between them. Using our 3-D models, we also investigate different antenna array configurations and their effect on the capacity of MIMO M-to-M systems. Contrary to common assumptions, we have found that there is no significant loss of capacity if the antenna array is tilted from the horizontal plane. Finally, we propose the design criteria for space-time coded continuous phase modulated systems. Our work would provide other researchers the tools needed to design and test future MIMO M-to-M communication systems.
58

PERFORMANCE ANALYSIS OF ADAPTIVE ARRAY SYSTEM AND SPACE-TIME BLOCK CODING IN MOBILE WIMAX (802.16e) SYSTEMS

Kim, Ngan Trieu, Ajiboye, Olumide January 2008 (has links)
We live in an information hungry age, we generate and process information at a rate never before recorded in the history of mankind. Today’s computing platforms are run on Gigahertz multi-core processors churning out Gigabits streams of data that need to be transmitted as quickly as possible. Often times the source and the destination are mobile which means wired connections are not a choice. This has led to an ever increasing need to develop wireless access technologies that support high throughput regardless of the transmission environment. Till date, many proprietary solutions exist that seek to bridge this gap with little or no support for interoperability. For the sheer scale of development that is required, a standard based solution is the key. The IEEE 802.1x committee oversees the development of standards for wireless systems, it formed the 802.16 working group to develop a standards-based Wireless Metropolitan Area Network (MAN) solution. One of the fruits of this effort is the 802.16e standard fondly referred to as mobile WiMAX and it is the subject of study in this thesis. This thesis seeks to analyze the transmission characteristics of two of the antenna systems defined in the standard i.e. Adaptive Beamforming Systems and Multiple-Input Multiple-Output Systems. Multiple-Input Multiple-Output (MIMO): utilizes multiple antennas at the transmitter and receiver to provide diversity gain, multiplexing gain or both. Adaptive Antenna Systems (AAS): Adaptive array system uses an antenna array to generate in real-time radiation patterns with the main lobes and/or nulls dynamically tuned to specific directions in order to increase or suppress signal power in that direction. / Worldwide Interoperability for Microwave Access (WiMAX) is the acronym for Institute of Electrical and Electronics Engineers (IEEE) 802.16 set of standards governing Air Interface for Fixed Broadband Wireless Access Systems. In the history of wireless systems, WiMAX is revolutionary technology as affords its users the Wi-Fi grade throughput and cellular system level of mobility. With WiMAX, broadband technology (traditionally ADSL and Fiber) goes wireless and WiMAX users can basically enjoy triple-play application, and split-second download and upload rates. WIMAX also offers full mobility much as traditional cellular systems do with features like seamless hand-over and roaming at vehicular speed; this is made possible because the system design covers the access network to core network. For the operator, WiMAX is a welcome development because it merges traditional cellular networks with broadband technology thus opening them to more business offerings and a larger client base and all this at a reduced cost of deployment. Base stations are comparatively cheaper and do not require extensive planning typical of other cellular systems thus WiMAX is aptly suited for emerging markets where infrastructure cost is a major issue; little wonder a lot of 3rd world countries have signified interest in the technology.
59

Simulace MIMO syst©m / Simulation of the MIMO systems

KanÄo, V­t January 2010 (has links)
MIMO systems are mainly used in application for wireless communication. Their principle is to use a large number of antennas for transmition and the reception of a signal. The core of these systems is to use space-time coding and either block or trellis space-time code. In the future, it is assumed enormous enlargement MIMO systems in many applications
60

Estimación de canal y selección adaptativa de código espacio-tiempo en sistemas de diversidad en transmisión

Mavares Terán, Dimas 17 November 2006 (has links)
Las técnicas de estimación de canal y de adaptación de la transmisión a las condiciones del entorno son temas de interés actual al estudiar la aplicación de técnicas de diversidad en transmisión en la tercera y cuarta generación de sistemas inalámbricos. En esta tesis se realiza un análisis del impacto del error de estimación de canal y la correlación en sistemas OFDM con diversidad en transmisión basados en codificación espacio-tiempo por bloques (STBC), se proponen técnicas de estimación de canal para estos sistemas y se propone una técnica de adaptación de la transmisión mediante la selección de código espacio-tiempo. En primer lugar, una técnica sencilla de mínimos cuadrados en el dominio de la frecuencia permite la estimación de canal en sistemas con dos antenas y constelaciones complejas, y con tres o cuatro antenas y constelaciones reales o complejas, utilizando STBCs ortogonales como bloques de entrenamiento. En segundo lugar, una representación 'sobre-completa' permite hacer una estimación diferencial de canal para un sistema con tres antenas transmisoras mediante la selección a partir de un banco de posibles estimadores, basándose en la redundancia provista por la matriz de transmisión no cuadrada del código ortogonal esporádico de tasa 3/4 para tres antenas transmisoras.En el contexto de sistemas con adaptación del transmisor, la técnica propuesta de diversidad por selección adaptativa de código espacio-tiempo se basa en el estado instantáneo del vector de canal y en un conjunto de niveles umbrales hallados fuera de línea en función del período de realimentación. Los resultados indican que esta técnica proporciona buenas prestaciones en canales correlados e incorrelados. Su aplicación a sistemas OFDM ha sido estudiada, superando a técnicas de selección de antena y a otras técnicas de transmisión adaptativa. / Channel estimation and adaptive transmission techniques are areas of increasing interest these days when considering transmit diversity systems for the 3G and 4G wireless communication systems. In this thesis an analysis of the channel estimation and channel correlation impact on transmit diversity OFDM systems based on space-time block coding (STBC) is presented, two channel estimation techniques are outlined and an adaptive space-time code selection technique is proposed. First, a simple frequency domain least square technique allows channel estimation for two transmitter systems with complex constellation, and three or four transmitter systems with real or complex constellation, using orthogonal STBCs as training blocks. Second, an 'overcomplete' representation allows a di.erential channel estimation for three transmitter systems through the instantaneous selection from a bank of estimators, based on the redundacy provided by the non-square transmission matrix of the sporadic 3/4-rate STBC for three transmitters.In the context of transmit adaptive systems, the proposed adaptive space-time code selection technique is based on both the instantaneous channel vector state and a set of predetermined threshold levels found o.-line as a function of the feedback period. Analytical and simulation results show that the proposed technique has a good performance in the presence of correlated and uncorrelated channels. Its application to OFDM systems has been considered, outperforming classical antenna selection techniques and other closed-loop adaptive transmission techniques.

Page generated in 0.2306 seconds