Spelling suggestions: "subject:"timetemperature superposition."" "subject:"optimumtemperature superposition.""
11 |
The Role of Penetrant Structure on the Transport and Mechanical Properties of a Thermoset AdhesiveKwan, Kermit S. Jr. 24 August 1998 (has links)
In this work the relationships between penetrant structure, its transport properties, and its effects on the mechanical properties of a polymer matrix were investigated. Although there is a vast amount of data on the diffusion of low molecular weight molecules into polymeric materials and on the mechanical properties of various polymer-penetrant systems, no attempts have been made to inter-relate the two properties with respect to the chemical structure of the diffusant. Therefore, two series of penetrants - n-alkanes and esters - were examined in this context, with the goal of correlating molecular size, shape, and chemical nature of the penetrant to its final transport and matrix mechanical properties. These correlations have been demonstrated to allow quantitative prediction of one property, given a reasonable set of data on the other parameters.
A series of n-alkanes (C6-C17) and esters (C5-C17) have been used to separate the effects of penetrant size and shape, from those due to polymer-penetrant interactions, in the diffusion through a polyamide polymeric adhesive. These effects have been taken into account in order to yield a qualitative relationship that allows for prediction of diffusivity based upon penetrant structural information. Transport properties have been analyzed using mass uptake experiments as well as an in-situ FTIR-ATR technique to provide detailed kinetic as well as thermodynamic information on this process.
The phenomenon of diffusion and its effects on the resulting dynamic mechanical response of a matrix polymeric adhesive have been studied in great detail using the method of reduced variables. The concept of a diffusion-time shift factor (log aDt) has been introduced to create doubly-reduced master curves, taking into account the effects of temperature and the variations in the polymer mechanical response due to the existence of a low molecular weight penetrant. / Ph. D.
|
12 |
Effets couplés de la température et de la vitesse de déformation sur le comportement mécanique non-linéaire des polymères amorphes : Caractérisation expérimentale et modélisation de la superposition vitesse de déformation-température / Coupled temperature and strain rate effects on non-linear mechanical behaviour of amorphous polymers : Experimental characterisation and modelling of strain rate-temperature superpositionFederico, Carlos 18 June 2018 (has links)
L’objectif de cette thèse est de proposer une stratégie simplifiée et précise pour caractériser et modéliser le comportement mécanique des polymères amorphes de l'état quasi-fluide à l'état solide.L'étude a été réalisée sur des PMMA de masses molaires et de degré de réticulations différentes.D’abord, le comportement mécanique dans le domaine viscoélastique linéaire est étudié à l'aide de tests DMTA et rhéologiques. Il ressort de l’étude que l'augmentation de la masse molaire et du degré de réticulation augmentait les modules de stockage et de perte en tant que la transition α. En parallèle, l'utilisation du principe de superposition temps-température a permis de déterminer «des vitesses de déformation équivalentes à la température de référence».Ensuite, le comportement mécanique à grande déformation est étudié par essais cycliques en traction uni-axial et de cisaillement à haute température et couplés à la DIC. De plus, les effets de la vitesse de déformation et de la température ont été couplés grâce à "vitesse de déformation équivalent à la température de référence" extrait des observations dans le domaine linéaire. Les résultats ont montré que cibler la même vitesse de déformation équivalente conduira aux mêmes courbes contrainte-déformation, c'est-à-dire la même réponse mécanique. Ceci permet de réduire le nombre de tests expérimentaux nécessaires pour caractériser le comportement mécanique des polymères amorphes.Enfin, un modèle basée dans un cadre thermodynamique a été utilisée pour reproduire la réponse mécanique des PMMAs à grande déformation. Le modèle présentait un bon accord avec les données expérimentales, étant capable de reproduire des comportements visco-élasto-plastiques, viscoélastiques, hyperélastiques et visco-hyperelastiques pour la traction cyclique. / The present PhD thesis proposes a simplified and accurate strategy for characterising and modelling the mechanical behaviour of amorphous polymers from the quasi-fluid state up to the solid state.The study was carried out on PMMAs with different molar masses and crosslinking degree.First, we addressed the mechanical behaviour in the linear viscoelastic domain using DMTA and rheological tests. Results showed that increasing the molar mas and crosslinking degree increased the elastic and loss moduli as the α-transition. In parallel, using the time-temperature superposition principle allowed determining “equivalent strain rates at reference temperature”.Then, we performed uniaxial tensile and shear uploading-unloading tests at high temperature and coupled with DIC, to characterise the mechanical behaviour at large strain. Additionally, strain rate and temperature effects were coupled by means of the “equivalent strain rate at reference temperature” extracted from observations in the linear domain. Results showed that targeting the same equivalent strain rate lead to the same stress-strain curves, i.e. same mechanical response. This allows reducing the number of experimental tests needed to characterise the mechanical behaviour of amorphous polymers.Finally, a constitutive modelling based in a thermodynamics framework, was used to reproduce the mechanical response of the PMMAs at large deformation. The model presented a good agreement with the experimental data, being able to reproduce viscoelastoplastic, viscoelastic, hyperelastic and viscohyperelastic behaviours for cyclic loading tensile.
|
13 |
Adhesion Studies of Polymers: (I) Autohesion of Ethylene/1-Octene Copolymers; (II) Method Development and Adhesive Characterization of Pressure Sensitive Adhesive in Paper Laminates for Postage StampsYang, Hailing 08 May 2006 (has links)
Autohesion is defined as the resistance to separation of two bonded identical films that have been joined together for a period of time under a given temperature and pressure. Studies on the autohesion phenomenon can provide fundamental insights into the physical processes of adhesive bond and failure, as well as the practical engineering issues such as crack healing, elastomer tack, polymer fusion, self-healing, and polymer welding. In the first part of this dissertation work, four ethylene/1-octene (EO) copolymers were used in the present study consisting of molecules with linear polyethylene backbone to which hexyl groups are attached at random intervals. These copolymers have similar number-average molecular weight (Mn) and polydispersity, but different 1-octene content. These hexyl groups act as the short branches and hinder the crystallization, reduce density to some extent in the solid state, lower the melting temperature, and decrease the stiffness of the bulk materials. A full understanding of the autohesion behavior of the ethylene/1-octene copolymers involves investigations at three different length scales: 1) the molecular scale which controls the interfacial structure; 2) the mesoscopic or microscopic scale which can provide information on the formation of interfaces and on how the energy is dissipated during a fracture process; and 3) the macroscopic scale at which the mechanical properties such as fracture energy can be obtained for a particular test geometry. In the present study, the effects of the branch content on the formation and fracture of the interface of these ethylene/1-octene assemblies were evaluated at the bonding temperatures (Tb) and bonding times (tb). The correlation among these three length scales was also investigated and modeled.
The adhesion strength of these symmetric interfaces of EO copolymers was investigated by T-peel fracture tests. The fracture of the interface is an irreversible entropy creating process which involved a substantial amount of energy dissipation. The results of such mechanical tests with respect to the bonding temperature (Tb), bonding time (tb) and peel rate indicated this energy dissipation is the result of a complicated interplay between the ability of the interface to transfer stress and its plastic and viscoelastic deformation properties. When Tb is much higher than the characteristic temperature (Tc), the interfaces were completely healed and cohesive failure was observed in T-peel tests. In this case, the fracture strength decreased with increasing branch content. In contrast, when Tb is very close to Tc, the fracture strength showed an increase with the branch content with either interfacial failure or cohesive failure being observed depending on the branch content and Tb. At higher peel rates, it is observed that higher peel energies are required to fracture the surfaces. Transmission electron microscopy (TEM) showed that the interfacial/interphase structure changed from amorphous to crystalline with an increase in the Tb.
The results from the bonding time effect studies showed that the peel energy is proportional to tb1/2 regardless of Tb. But the branch content and the Tb play an important role on the seal rate. Thus, higher seal rate was found for higher Tb and higher branch content. These results also suggest that the autohesion of ethylene/1-octene copolymers are strongly associated with the interactions of melted chains. The chain compositions of these Zeigler-Natta EO copolymers are highly heterogeneous with the branches concentrated in the lower molecular weight portion. Long linear chain segments could form large, well-ordered crystals that provide strong anchors for the tie molecules and therefore determine the density of inter-crystalline links. Short chains with lots of branches could behave as protrusions along the chain to obstruct chain disentanglement and limit a chain from sliding through a crystal. Due to these reasons, the short chains with branches would contribute much less than the long linear chains to the full peel strength after complete sealing. However, higher peel strengths could be obtained only at the higher temperatures or longer bonding times at which the long linear chains begin to melt and diffuse across the interface. On the other hand, the higher branch content samples have the lower crystallinity and could obtain the higher chain mobility at the lower bonding temperatures and with shorter bonding times. Therefore, higher seal strength was observed for the higher branch content samples at lower Tb.
Following T-peel fracture tests of ethylene/1-octene copolymer assemblies which showed interfacial failures, the fractured surfaces were investigated by using Atomic Force Microscopy (AFM) and characterized by fractal analysis together with the original films. The AFM images showed strong dependence on the peel rate and branch content. Quantitatively, the fractal analyses demonstrated fractal characteristics at the different finite scales. Two regimes showing fractal features were identified for each surface. In regime I (low magnifications) the fracture test did not change the fractal dimensions much. But there were significant changes in regime II before welding and after T-peel fracture tests. The length scale that separated these two regimes is very close to the size of lamellar structures. The characteristic sizes at which the fractal characteristics emerge were shown to appear at larger scales for surfaces fractured at higher peel rates. This suggests that the appearance of fractal behavior at larger scales requires higher fracture energies. The characteristic sizes and fractal dimensions were shown to depend on the molecular structure. Because the fractal analysis suggests at least some crystalline lamellae on the surfaces still existed during T-peel fracture tests, a "Stitch-welding" has been therefore proposed as the autohesion mechanism in which only chains in the amorphous portions could inter-diffuse.
In the second part of this dissertation work, a multi-layer lap-shear geometry has been designed and proven as a reliable testing method in evaluation of the dynamical mechanical properties of polyacrylic pressure sensitive adhesive (PSA) in paper lamination for postage stamp applications. In-situ testing of four different PSA stamp laminates constructed by laminating water-based polyacrylic PSAs to the stamp face papers were carried out using a dynamic mechanical analyzer (DMA) in the temperature range from -50 to 60 oC at frequencies 0.1, 1, 10, and 100 Hz. This geometry requires the tension mode on the DMA, but the results which were recorded as tensile properties were converted to shearing properties of the PSA layers in the laminate. The effect of the thickness (layers of laminates) on the dynamical mechanical properties has been studied and the results suggested that a multi-layer geometry with 5-10 layers could be an appropriate structure to produce enhanced responses. Therefore, the geometry with 8-layer laminates was used for frequency sweep/isothermal temperature and frequency sweep/temperature step tests. The results showed three relaxation responses that is, glassy, transition, and flow regions with respect to the frequencies and temperatures. These results also implied the viscoelastic characteristics of these PSA products. The tensile properties of the face papers were also tested using the same parameters as those of the multi-layer geometry. Significant differences were found between the shearing behaviors of the multi-layer geometry and the tensile behaviors of the elastic face paper. This suggests that the tensile deformation of the face paper in the multi-layer geometry could be ignored and the elastic paper did not contribute to the shearing properties of the PSA layers. Time-temperature superposition curves have been produced with reference temperature set at 23 oC, which can be used to predict the long term and short term performances of these samples at this temperature.
This method can be utilized as a standard testing method on the PSA adhesives in the laminate form. In addition to the dynamic mechanical properties, it can also be developed to be a general standard method on testing the rheological properties of adhesives, polymer melts and other viscous materials. / Ph. D.
|
14 |
Durabilité des interfaces collées béton/renforts composites : développement d'une méthodologie d'étude basée sur un dispositif de fluage innovant conçu pour être couplé à un vieillissement hygrothermique / Durability of the stuck interfaces composite concretes-reinforcementsHouhou, Noureddine 28 September 2012 (has links)
Le programme de recherche développé dans le cadre de cette thèse a pour principal objectif de concevoir, réaliser et valider une méthodologie d'étude des effets du vieillissement des interfaces collées, basée sur l'utilisation d'un dispositif de fluage innovant pouvant être couplé à un vieillissement hygrothermique. Celui-ci reprend la configuration classique de joint à double recouvrement mais permet de solliciter sous charge constante l'assemblage collé béton/composite. Il présente de plus certaines spécificités (zones de joint non sollicitées, compatibilité avec une machine d'essai à simple recouvrement existante,...) qui permettent de recueillir un grand nombre de résultat expérimentaux complémentaires. En premier lieux, nos travaux présentent une synthèse bibliographique retraçant le contexte du renforcement par composites collés et précisant les principaux mécanismes physico-chimiques susceptibles d'affecter la durabilité des adhésifs. Le manuscrit décrit ensuite les travaux expérimentaux menés pour étudier le comportement mécanique et physico-chimique des deux adhésifs sélectionnés pour la réalisation des joints collés béton/composites. Finalement, une approche prédictive basée sur i) des tests de fluage thermo-stimulés, ii) sur l'application du Principe de Superposition Temps-Température et iii) sur l'utilisation du modèle rhéologique de Burger, a permis de proposer un modèle de fluage non linéaire pour chacun des deux systèmes de colle. La seconde partie des travaux expérimentaux concerne la conception et la validation d'un dispositif innovant destiné à la caractérisation du comportement en fluage des interfaces collées béton/composite. Un élément important du cahier des charges de ce dispositif était d'en limiter l'encombrement, de sorte qu'il soit possible de tester plusieurs corps d'épreuve dans une chambre climatique au volume réduit, en vue d'étudier les effets synergiques du fluage et du vieillissement environnemental sur la durabilité des joints collés. Dans ce contexte, un prototype capable de solliciter en fluage trois corps d'épreuves à double recouvrement réalisés avec le procédé de renforcement Sika®Carbodur®S et connectés sur un unique circuit hydraulique, a été conçu et réalisé. Les résultats issus du prototype ont permis de le valider, en vérifiant notamment le maintient dans le temps de la charge appliquée, et le comportement symétrique des corps d'épreuve à double recouvrement. Le comportement mécanique des interfaces collées s'est révélé répétable, symétrique et conforme aux diverses modélisations réalisées, soit en calculant la réponse instantanée de l'interface au moyen d'un logiciel aux Eléments Finis (E.F.) ou à partir du modèle analytique de Volkersen, soit en calculant la réponse différée de l'interface en intégrant le modèle de fluage non linéaire de l'adhésif identifié précédemment dans le calcul aux E.F.. La dernière partie des travaux présentés dans le manuscrit concerne la réalisation d'un banc complet de fluage impliquant 14 corps d'épreuves à double recouvrement. Ces corps d'épreuve sont réalisés pour moitié avec le système de renforcement Sika®Carbodur®S et pour l'autre moitié avec le système Compodex. Le banc de fluage est installé dans la salle de vieillissement hygrothermique du Département Laboratoire d'Autun (40°C ; 95% H.R.). Tous les corps d'épreuves sont sollicités en fluage par un système de chargement alimenté par un circuit hydraulique similaire à celui utilisé pour le prototype, mais complété par une centrale hydraulique régulant la pression à partir de la mesure d'un capteur de pression. Pour compléter ces caractérisations sur interfaces collées, des essais de vieillissement sont également menés sur des éprouvettes d'adhésifs massiques stockées dans la salle climatique, certaines d'entre elles étant simultanément soumises à des sollicitations de fluage / The main objective of the present research is to design, realize and validate a methodology for studying ageing of bonded interfaces, based on the development of an innovative experimental creep device that can be coupled to hydrothermal aging. This device is based on the double-lap joint shear test configuration and enables to apply a constant load to the bonded assembly. In addition, this device combines other complementary features (unsolicited bonded joint zones, compatibility with an existing single lap shear test machine ...) that allows collecting useful complementary data. First, our work presents a literature review outlining the context of strengthening by bonded composite and specifying the main physicochemical mechanisms that may affect the durability of adhesive joints. Then, the manuscript describes the experimental characterizations carried out to assess both mechanical and physicochemical behaviors of the two adhesives selected for this study and which will be used to bond the composite on RC specimens in a later stage. Finally, a predictive approach based on i) thermo-stimulated creep tests, ii) on the application of the Time-Temperature-Superposition Principle and iii) on the use of the Burger's rheological model, allowed us to propose a non-linear creep model for each of the two adhesive systems. The second part of the experimental work is devoted to the design and validation of an innovative device for characterizing the creep behavior of concrete / composite adhesively bonded interfaces. An important requirement in the specifications was to reduce the size of the experimental device, so that several test specimens could be installed in a climatic room of limited volume, in order to study the synergistic effects of creep and hydrothermal ageing on the joint durability. In this line, a prototype involving three double-shear test-specimens loaded by flat jacks actuated by a centralized hydraulic system, was designed and realized (test-specimens were prepared using the Sika®Carbodur® S strengthening system). Collected data made it possible to validate the creep setup, by checking the constancy of the applied load over time, and the symmetrical behavior of the double lap shear test bodies. The mechanical behavior of the bonded interfaces was found to be repeatable, symmetrical and in a fair agreement with numerical and analytical modeling, done either by calculating the instantaneous response of the interface using a finite element (FE) approach and the analytical Völkersen's model, or by simulating the delayed creep response of the interface using a FE model in which the non-linear creep behavior of the adhesive layer had been implemented. The last chapter of the manuscript presents the realization of a full-scale creep setup involving fourteen double lap test specimens. Half of the test specimens were strengthened with Sika®Carbodur ® S and the other half with Compodex® C12 reinforcing composite system. This creep setup was installed in the climatic room of the Département Laboratoire d'Autun (40°C, 95% R.H.). Test specimens are creep loaded thanks to flat jacks powered by a hydraulic system similar to that used in the prototype, but supplemented by an electronic station that ensures pressure regulation in the circuit, based on the measurements of a pressure sensor. Beside these characterizations of bonded interfaces, complementary tests are also conducted on samples of the buk adhesive material stored in the climatic room, some of these samples being simultaneously subjected to creep loading
|
15 |
Dynamic Mechanical Thermal Analysis of PolyoxymethyleneAsare, Richard January 2024 (has links)
This thesis, conducted in collaboration with IKEA Components, explores the rate-temperature dependence of polyoxymethylene (POM) thermoplastic using dynamic mechanical thermal analysis (DMTA). A force-controlled DMTA study was carried out, and the experimental data were processed to derive the complex, storage, and loss modulus. Master curves were constructed using the time-temperature superposition (TTS) method, comparing the Arrhenius and William-Landel-Ferry (WLF) equations. Additionally, a master curve was manually created by shifting isothermal material properties. This manual curve was then compared to those generated using standard equations. The study found that the storage modulus was the dominant phenomenon in POM, with the loss modulus showing distortion likely due to measurement noise. Results indicated a slight softening of the storage modulus with increased cyclic loading. The manually constructed master curve was more coherent compared to those derived from the Arrhenius and WLF equations.
|
16 |
Accelerated Testing Method to Estimate the Lifetime of Polyethylene PipesKalhor, Roozbeh 26 June 2017 (has links)
The ability to quickly develop predictions of the time-to-failure under different loading levels allows designers to choose the best polymeric material for a specific application. Additionally, it helps material producers to design, manufacture, test, and modify a polymeric material more rapidly. In the case of polymeric pipes, previous studies have shown that there are two possible time-dependent failure mechanisms corresponding to ductile and brittle failure. The ductile mechanism is evident at shorter times-to-failure and results from the stretching of the amorphous region under loading and the subsequent plastic deformation. Empirical results show that many high-performance polyethylene (PE) materials do not exhibit the brittle failure mechanism. Hence, it is critical to understand the ductile mechanism and find an approach to predict the corresponding times-to-failure using accelerated means. The aim of this study is to develop an innovative rupture lifetime acceleration protocol for PE pipes which is sensitive to the structure, orientation, and morphology changes introduced by changing processing conditions. To accomplish this task, custom fixtures are developed to admit tensile and hoop burst tests on PE pipes. A pressure modified Eyring flow equation is used to predict the rupture lifetime of PE pipes using the measured mechanical properties under axial tensile and hydrostatic pressure loading in different temperatures and strain rates. In total, the experimental method takes approximately one week to be completed and allows the prediction of pipe lifetimes for service lifetime in excess of 50 years. / Master of Science / Steel, cast and galvanized iron, and asbestos cement (AC) pipelines have been historically used in water management services. However, they often experienced deterioration because of corrosion and encrustation, resulting in 23 to 27 bursts per 100 miles of pipeline in the US per year. Therefore, plastic pipes were developed to carry liquids (water and sewage), gases, etc. The Plastic Pipe Institute (PPI) requires a service life of at least 50-years for plastic pipes. Hence, pipe producers and material suppliers continuously attempt to improve the materials and manufacturing processes used for plastic pipes to increase their service lifetimes. However, there is still no plastic pipe that has been in service for 50 years. Therefore, a few techniques have been developed to accelerate the aging process and to predict if the plastic pipe is able to endure the 50-year lifetime without failure.
In this work, a combined experimental and analytical framework is presented to develop accelerated lifetime estimates for plastic pipes. Custom axial tensile and internal pressurization fixtures are developed to measure the pipe response; the analytical method is used to extend the results to predict 50-year (and beyond) behavior.
|
Page generated in 0.1255 seconds