Spelling suggestions: "subject:"toepaslike"" "subject:"toepassing""
41 |
An Embedded Toeplitz ProblemOrdonez-Delgado, Bartleby 05 October 2010 (has links)
In this work we investigate multi-variable Toeplitz operators and their relationship with KK-theory in order to apply this relationship to define and analyze embedded Toeplitz problems. In particular, we study the embedded Toeplitz problem of the unit disk into the unit ball in C^2. The embedding of Toeplitz problems suggests a way to define Toeplitz operators over singular spaces. / Ph. D.
|
42 |
[en] THE INVERSE EIGENVALUE PROBLEM FOR TOEPLITZ MATRICES / [pt] O PROBLEMA INVERSO DE AUTOVALORES PARA MATRIZES DE TOEPLITZTANIA VIEIRA DE VASCONCELOS 15 March 2004 (has links)
[pt] Em 1994, Henry Landau mostrou que uma matriz de Toeplitz
real simétrica pode assumir qualquer valor real. O objetivo
desse texto é apresentar a demonstração de Landau. São
empregadas técnicas de teoria de grau topológico e teoria
espectral. / [en] In 1994, Henry Landau proved that a real, symmetric
Toeplitz matrix obtains an arbitrary real spectrum. In this
text, we present the details of his proof. The key
ingredients are topological degree theory and spectral
theory.
|
43 |
Matrices structurées et matrices de Toeplitz par blocs de Toeplitz en calcul numérique et formelKhalil, Houssam 25 July 2008 (has links) (PDF)
Plusieurs problèmes en mathématiques appliquées requièrent la résolution de systèmes linéaires de très grandes tailles, et parfois ces systèmes doivent être résolus de multiples fois. Dans de tels cas, les algorithmes standards basés sur l'élimination de Gauss demandent O(n^3) opérations arithmétiques pour résoudre un système de taille n, et ce sera un handicap pour le calcul. C'est pour cela qu'on cherche à utiliser la structure pour réduire le temps de calcul.<br /><br /> La structure de Toeplitz, de Hankel, de Cauchy, de Vandermonde et d'autre structure plus générales sont bien exploitées pour réduire la complexité de résolution d'un système linéaire à O(n log^2 n) opérations arithmétiques.<br /><br /> Les matrices structurées en deux niveaux et surtout les matrices de Toeplitz par blocs de Toeplitz (TBT) apparaissent dans beaucoup des applications. Le but de ce travail est de trouver des algorithmes de résolution rapide pour des systèmes TBT de grande taille.<br /><br /> Dans cette thèse, on décrit les difficultés de ce problème. On donne trois algorithmes rapide, en O(n^3/2) opérations, de résolution pour les systèmes de Toeplitz bande par blocs Toeplitz bande. On donne aussi une nouvelle méthode de résolution des systèmes de Toeplitz scalaires en donnant une relation entre la solution d'un système de Toeplitz scalaires et les syzygies des polynômes en une seule variable. On généralise cette méthode pour les matrices TBT et on donne une relation entre la solution d'un tel système linéaire et les syzygies des polynômes en deux variables.
|
44 |
Preconditioning techniques for a family of Toeplitz-like systems with financial applicationsZhang, Ying Ying, January 2010 (has links)
University of Macau / Faculty of Science and Technology / Department of Mathematics
|
45 |
Estimates for the condition numbers of large semi-definite Toeplitz matricesBöttcher, A., Grudsky, S. M. 30 October 1998 (has links) (PDF)
This paper is devoted to asymptotic estimates for the condition numbers
$\kappa(T_n(a))=||T_n(a)|| ||T_n^(-1)(a)||$
of large $n\cross n$ Toeplitz matrices $T_N(a)$ in the case where
$\alpha \element L^\infinity$ and $Re \alpha \ge 0$ . We describe several classes
of symbols $\alpha$ for which $\kappa(T_n(a))$ increases like $(log n)^\alpha, n^\alpha$ ,
or even $e^(\alpha n)$ . The consequences of the results for singular values, eigenvalues,
and the finite section method are discussed. We also consider Wiener-Hopf integral
operators and multidimensional Toeplitz operators.
|
46 |
Limiting Behavior of the Largest Eigenvalues of Random Toeplitz Matrices / Det asymptotiska beteendet av största egenvärdet av stokastiska Toeplitz-matriserModée, Samuel January 2019 (has links)
We consider random symmetric Toeplitz matrices of size n. Assuming that the entries on the diagonals are independent centered random variables with finite γ-th moment (γ>2), a law of large numbers is established for the largest eigenvalue. Following the approach of Sen and Virág (2013), in the limit of large n, the largest rescaled eigenvalue is shown to converge to the limit 0.8288... . The background theory is explained and some symmetry results on the eigenvectors of the Toeplitz matrix and an auxiliary matrix are presented. A numerical investigation illustrates the rate of convergence and the oscillatory nature of the eigenvectors of the Toeplitz matrix. Finally, the possibility of proving a limiting distribution for the largest eigenvalue is discussed, and suggestions for future research are made. / Vi betraktar stokastiska Toeplitz-matriser av storlek n. Givet att elementen på diagonalerna är oberoende, centrerade stokastiska variabler med ändligt γ-moment (γ>2), fastställer vi ett stora talens lag för det största egenvärdet. Med metoden från Sen och Virág (2013) visar vi att det största omskalade egenvärdet konvergera mot gränsen 0.8288... . Bakgrundsteorin förklaras och några symmetriresultat för Toeplitz-matrisens egenvektorer presenteras. En numerisk undersökning illustrerar konvergenshastigheten och Toeplitz-matrisens egenvektorers periodiska natur. Slutligen diskuteras möjligheten att bevisa en asymptotisk fördelning för de största egenvärderna och förslag för fortsatt forskning läggs fram.
|
47 |
Efficient solutions to Toeplitz-structured linear systems for signal processingTurnes, Christopher Kowalczyk 22 May 2014 (has links)
This research develops efficient solution methods for linear systems with scalar and multi-level Toeplitz structure. Toeplitz systems are common in one-dimensional signal-processing applications, and typically correspond to temporal- or spatial-invariance in the underlying physical phenomenon. Over time, a number of algorithms have been developed to solve these systems economically by exploiting their structure. These developments began with the Levinson-Durbin recursion, a classical fast method for solving Toeplitz systems that has become a standard algorithm in signal processing. Over time, more advanced routines known as superfast algorithms were introduced that are capable of solving Toeplitz systems with even lower asymptotic complexity. For multi-dimensional signals, temporally- and spatially-invariant systems have linear-algebraic descriptions characterized by multi-level Toeplitz matrices, which exhibit Toeplitz structure on multiple levels. These matrices lack the same algebraic properties and structural simplicity of their scalar analogs. As a result, it has proven exceedingly difficult to extend the existing scalar Toeplitz algorithms for their treatment. This research presents algorithms to solve scalar and two-level Toeplitz systems through a constructive approach, using methods devised for specialized cases to build more general solution methods. These methods extend known scalar Toeplitz inversion results to more general scalar least-squares problems and to multi-level Toeplitz problems. The resulting algorithms have the potential to provide substantial computational gains for a large class of problems in signal processing, such as image deconvolution, non-uniform resampling, and the reconstruction of spatial volumes from non-uniform Fourier samples.
|
48 |
Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert ApproachGharakhloo, Roozbeh 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this work we use and develop Riemann-Hilbert techniques to study the asymptotic behavior of structured determinants. In chapter one we will review the main underlying
definitions and ideas which will be extensively used throughout the thesis. Chapter two is devoted to the asymptotic analysis of Hankel determinants with Laguerre-type and Jacobi-type potentials with Fisher-Hartwig singularities. In chapter three we will propose a Riemann-Hilbert problem for Toeplitz+Hankel determinants. We will then analyze this Riemann-Hilbert problem for a certain family of Toeplitz and Hankel symbols. In Chapter four we will study the asymptotics of a certain bordered-Toeplitz determinant which is related to the next-to-diagonal correlations of the anisotropic Ising model. The analysis is based upon relating the bordered-Toeplitz determinant to the solution of the Riemann-Hilbert problem associated to pure Toeplitz determinants. Finally in chapter ve we will study the emptiness formation probability in the XXZ-spin 1/2 Heisenberg chain, or equivalently, the asymptotic analysis of the associated Fredholm determinant.
|
49 |
Circulant preconditioners for Toeplitz matrices and their applicationsin solving partial differential equations金小慶, Jin, Xiao-qing. January 1992 (has links)
published_or_final_version / Mathematics / Doctoral / Doctor of Philosophy
|
50 |
Circulant preconditioners from B-splines and their applications.January 1997 (has links)
by Tat-Ming Tso. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (p. 43-45). / Chapter Chapter 1 --- INTRODUCTION --- p.1 / Chapter §1.1 --- Introduction --- p.1 / Chapter §1.2 --- Preconditioned Conjugate Gradient Method --- p.3 / Chapter §1.3 --- Outline of Thesis --- p.3 / Chapter Chapter 2 --- CIRCULANT AND NON-CIRCULANT PRECONDITIONERS --- p.5 / Chapter §2.1 --- Circulant Matrix --- p.5 / Chapter §2.2 --- Circulant Preconditioners --- p.6 / Chapter §2.3 --- Circulant Preconditioners from Kernel Function --- p.8 / Chapter §2.4 --- Non-circulant Band-Toeplitz Preconditioners --- p.9 / Chapter Chapter 3 --- B-SPLINES --- p.11 / Chapter §3.1 --- Introduction --- p.11 / Chapter §3.2 --- New Version of B-splines --- p.15 / Chapter Chapter 4 --- CIRCULANT PRECONDITIONERS CONSTRUCTED FROM B-SPLINES --- p.24 / Chapter Chapter 5 --- NUMERICAL RESULTS AND CONCLUDING REMARKS --- p.28 / Chapter Chapter 6 --- APPLICATIONS TO SIGNAL PROCESSING --- p.37 / Chapter §6.1 --- Introduction --- p.37 / Chapter §6.2 --- Preconditioned regularized least squares --- p.39 / Chapter §6.3 --- Numerical Example --- p.40 / REFERENCES --- p.43
|
Page generated in 0.0476 seconds