Spelling suggestions: "subject:"topologische isolator"" "subject:"topologische isolators""
1 |
Conductivity behavior of LaNiO3- and LaMnO3- based thin film superlatticesWei, Haoming 09 May 2017 (has links) (PDF)
The present work covers the fabrication and electrical and magnetic investigation of LaNiO3- and LaMnO3- based superlattices (SL). In recent years, several interesting theoretical predictions have been made in these SLs, for example, Mott insulators, metal-insulator transitions, superconductivity, topological insulators, and Chern insulators. Motivated by the promising theoretical predictions, four kinds of SLs with different designed structures and orientations were systematically studied in this thesis. The samples were grown by pulsed laser deposition with in-situ reflection high-energy electron diffraction to monitor the two-dimensional layer-by-layer growth process. In order to ensure the high-quality of SLs, growth parameters were optimised. Characteristic methods like X-ray diffraction, atomic force microscopy, and transmission electron microscopy were used. These measurements proved the high-quality of the SLs and provided the basis for electrical and magnetic measurements.
The first studied SL is the (001)-oriented LaNiO3/LaAlO3 SL, which was predicted as a superconductor in theory. Temperature-dependent resistivity measurements revealed a metal-insulator transition by lowering the dimensionality of the LaNiO3 layers in the SLs from three dimensions to two dimensions. The second studied SL is the (111)-oriented LaNiO3/LaAlO3 SL, which was predicted as a topological insulator in theory. The polarity-controlled conductivity was observed and the intrinsic conductivity mechanisms were discussed by means of appropriate modeling. The third studied SL is LaMnO3/LaAlO3 SL, which was predicted as a Chern insulator in theory. By lowering the temperature, a paramagnetic-ferromagnetic phase transition and a thermal activated behavior were observed in the SLs. The last studied SL is the LaNiO3/LaMnO3 SL, in which an exchange bias effect was expected. The studies reveal the exchange bias exists in three kinds of SLs with different orientations.
|
2 |
Untersuchungen zu Gasphasentransporten in quasibinären Systemen von Bi2Se3 mit Bi2Te3, Sb2Se3, MnSe und FeSe zur Erzeugung von NanokristallenNowka, Christian 16 January 2017 (has links) (PDF)
In Topologischen Isolatoren (TI) werden metallische Zustände an der Oberfläche beobachtet, während die entsprechenden Volumenzustände eine Bandlücke aufweisen. Der Volumenbeitrag zur Leitfähigkeit von TI-Materialien macht eine Synthese von Nanokristallen bzw. eine Dotierung nötig. Der Fokus der Untersuchungen dieser Arbeit liegt dabei auf der Erzeugung von Nanokristallen der TI-Materialien Bi2Te3- und Bi2Te2Se sowie dotierter Bi2Se3-Nanokristallen.
Die Synthese der Nanokristalle erfolgte durch den Gasphasentransport im geschlossenen System über den Mechanismus einer Zersetzungssublimation bzw. unter dem Einsatz eines Transportmittels. Für eine erfolgreiche Erzeugung der Nanokristalle sind im Vorfeld thermodynamische Modellierungen des Gasphasentransports sowie Versuche zum chemischen Transport für die quasibinären Systeme Bi2Se3-Bi2Te3, Bi2Se3-Sb2Se3 und Bi2Se3-FeSe sowie für das ternäre System Mn-Bi-Se durchgeführt worden.
Durch Versuche zum chemischen Transport konnten die Aussagen der Modellierung bestätigt und im Weiteren der Dotandengehalt in den abgeschiedenen Kristallen sowie der Einlagerungsmechanismus durch Ergebnisse aus XRD- und ICP-OES-Untersuchungen beschrieben werden. Die Synthese bzw. Dotierung der Nanokristalle wurde hauptsächlich durch die Transportrate und den Dampfdruck des Dotanden bestimmt.
In den Systemen Bi2Se3-Bi2Te3 und Bi2Se3-Sb2Se3 ist ein Gasphasentransport über eine Zersetzungssublimation durchführbar und resultierte in einer erfolgreichen Darstellung von Bi2Te3- und Bi2Te2Se-Nanokristallen sowie von dotierten (SbxBi1-x)2Se3-Nanokristallen. Entgegen dessen erfolgte der Gasphasentransport in den Systemen Bi2Se3-FeSe und Mn-Bi-Se unter Verwendung eines Transportmittels. Hierbei verringerten die gesteigerten Transportraten das Wachtum von Nanokristallen. Im Weiteren gelang es dotierte (Fe,Mn)xBi2-xSe3-Volumenkristalle sowie MnBi2Se4-Einkristalle darzustellen und mittels XRD, ICP-OES, magnetischer Messungen sowie elektrischem Transport zu charakterisieren.
|
3 |
Conductivity behavior of LaNiO3- and LaMnO3- based thin film superlatticesWei, Haoming 24 April 2017 (has links)
The present work covers the fabrication and electrical and magnetic investigation of LaNiO3- and LaMnO3- based superlattices (SL). In recent years, several interesting theoretical predictions have been made in these SLs, for example, Mott insulators, metal-insulator transitions, superconductivity, topological insulators, and Chern insulators. Motivated by the promising theoretical predictions, four kinds of SLs with different designed structures and orientations were systematically studied in this thesis. The samples were grown by pulsed laser deposition with in-situ reflection high-energy electron diffraction to monitor the two-dimensional layer-by-layer growth process. In order to ensure the high-quality of SLs, growth parameters were optimised. Characteristic methods like X-ray diffraction, atomic force microscopy, and transmission electron microscopy were used. These measurements proved the high-quality of the SLs and provided the basis for electrical and magnetic measurements.
The first studied SL is the (001)-oriented LaNiO3/LaAlO3 SL, which was predicted as a superconductor in theory. Temperature-dependent resistivity measurements revealed a metal-insulator transition by lowering the dimensionality of the LaNiO3 layers in the SLs from three dimensions to two dimensions. The second studied SL is the (111)-oriented LaNiO3/LaAlO3 SL, which was predicted as a topological insulator in theory. The polarity-controlled conductivity was observed and the intrinsic conductivity mechanisms were discussed by means of appropriate modeling. The third studied SL is LaMnO3/LaAlO3 SL, which was predicted as a Chern insulator in theory. By lowering the temperature, a paramagnetic-ferromagnetic phase transition and a thermal activated behavior were observed in the SLs. The last studied SL is the LaNiO3/LaMnO3 SL, in which an exchange bias effect was expected. The studies reveal the exchange bias exists in three kinds of SLs with different orientations.
|
4 |
Untersuchungen zu Gasphasentransporten in quasibinären Systemen von Bi2Se3 mit Bi2Te3, Sb2Se3, MnSe und FeSe zur Erzeugung von NanokristallenNowka, Christian 19 December 2016 (has links)
In Topologischen Isolatoren (TI) werden metallische Zustände an der Oberfläche beobachtet, während die entsprechenden Volumenzustände eine Bandlücke aufweisen. Der Volumenbeitrag zur Leitfähigkeit von TI-Materialien macht eine Synthese von Nanokristallen bzw. eine Dotierung nötig. Der Fokus der Untersuchungen dieser Arbeit liegt dabei auf der Erzeugung von Nanokristallen der TI-Materialien Bi2Te3- und Bi2Te2Se sowie dotierter Bi2Se3-Nanokristallen.
Die Synthese der Nanokristalle erfolgte durch den Gasphasentransport im geschlossenen System über den Mechanismus einer Zersetzungssublimation bzw. unter dem Einsatz eines Transportmittels. Für eine erfolgreiche Erzeugung der Nanokristalle sind im Vorfeld thermodynamische Modellierungen des Gasphasentransports sowie Versuche zum chemischen Transport für die quasibinären Systeme Bi2Se3-Bi2Te3, Bi2Se3-Sb2Se3 und Bi2Se3-FeSe sowie für das ternäre System Mn-Bi-Se durchgeführt worden.
Durch Versuche zum chemischen Transport konnten die Aussagen der Modellierung bestätigt und im Weiteren der Dotandengehalt in den abgeschiedenen Kristallen sowie der Einlagerungsmechanismus durch Ergebnisse aus XRD- und ICP-OES-Untersuchungen beschrieben werden. Die Synthese bzw. Dotierung der Nanokristalle wurde hauptsächlich durch die Transportrate und den Dampfdruck des Dotanden bestimmt.
In den Systemen Bi2Se3-Bi2Te3 und Bi2Se3-Sb2Se3 ist ein Gasphasentransport über eine Zersetzungssublimation durchführbar und resultierte in einer erfolgreichen Darstellung von Bi2Te3- und Bi2Te2Se-Nanokristallen sowie von dotierten (SbxBi1-x)2Se3-Nanokristallen. Entgegen dessen erfolgte der Gasphasentransport in den Systemen Bi2Se3-FeSe und Mn-Bi-Se unter Verwendung eines Transportmittels. Hierbei verringerten die gesteigerten Transportraten das Wachtum von Nanokristallen. Im Weiteren gelang es dotierte (Fe,Mn)xBi2-xSe3-Volumenkristalle sowie MnBi2Se4-Einkristalle darzustellen und mittels XRD, ICP-OES, magnetischer Messungen sowie elektrischem Transport zu charakterisieren.
|
5 |
A Heavy Graphene Analogue amongst the Bismuth Subiodides as Host for Unusual Physical PhenomenaRasche, Bertold 16 January 2017 (has links) (PDF)
This thesis was inspired by the discovery of Bi14Rh3I9, the first so-called weak three-dimensional topological insulator (3D-TI) and has been concerned with the topic of TIs in general. Two aspects were tackled to gain a deeper understanding of this new state of matter. On one hand, the expansion of the material’s basis and on the other hand developing a simple model of the structure and analysing it via density-functional theory (DFT) based methods. To discover new materials, a systematic investigation of the metal-rich parts of the bismuth–platinum-metal–iodine phase systems was conducted. It led to six new phases among the bismuth subiodides. Some of which, e.g. Bi14Rh3I9, share a honeycomb network of platinum-metal-centred bismuth-cubes and are the seed of a family of materials with this structural motive. The others show strand-like structures or layered structures with platinum-platinum bonds. The latter were so far unknown amongst bismuth subiodides.
The honeycomb network was separately analysed and shown to host the TI properties. Structurally and electronically it can be seen as a “heavy graphene analogue”, which refers to the fact that graphene with hypothetical strong spin-orbit coupling (“heavy graphene”) was the first TI put forward by theoreticians. Apart from DFT-calculations, physical experiments confirmed the TI properties. Angle-resolved photoelectron spectroscopy (ARPES) was used to verify the electronic structure and scanning tunnelling microscopy and spectroscopy (STM and STS) to reveal the protected 1D edge states present at the cleaving surface of this material. As the arrangement of the honeycomb layer varies between the different known and newly discovered materials within this family of structures, this influence was also investigated.
All further materials were also characterised by DFT-calculations and physical experiments, e.g. magnetisation and transport measurements.
This thesis might give an experimental and theoretical basis for a deeper understanding of the TI state of matter. The 1D edge states on the surface of Bi14Rh3I9 could be a chance to handle spins and therefore propel spintronic research, or they could host Majorana fermions, which could be used as qubits in quantum computing.
|
6 |
In situ studies of Bi2Te3 thin films and interfaces grown by molecular beam epitaxyMota Pereira, Vanda Marisa 14 March 2022 (has links)
Three-dimensional topological insulators (TIs) are a class of materials for which the bulk is insulating, while the surface is necessarily metallic. A band inversion that occurs in the presence of spin-orbit coupling, and conduction and valence bands with opposite parities are necessary conditions for the existence of this class of materials. The metallicity of the surface states appears as a consequence of the topology of the bulk and these states are characterized by massless Dirac dispersions and helical spin polarization that protect the surface states against backscattering. The robustness of the topological surface states further implies that they are not destroyed by non-magnetic impurities or defects.
Since their initial conception, a vast amount of theoretical studies have predicted very interesting features stemming from the topological surface states. An example of that can be found when breaking the time-reversal symmetry by introducing magnetic order in the system, which can lead to exotic phenomena such as the quantum anomalous Hall effect. The properties exhibited by these systems are expected to be of high importance both in fundamental research as well as in technological applications. However, the major difficulty remains the access to purely topological surface states. The remaining bulk conductivity of the TIs such as Bi2Se3, Bi2Te3 or Sb2Te3 still hinders the experimental realization of some of the predicted phenomena. This highlights the need of high-quality bulk-insulating materials with ultra-clean surfaces and interfaces, which can only be achieved with delicate sample preparation and characterization methods.
The present work is part of the effort to fabricate high-quality TI films in a controlled manner. This shall then allow more complex investigations, such as interface effects and possibilities to engineer the band structure of the TIs. The former will be explored mainly in the form of heterostructures of Bi2Te3 and magnetic insulating layers, whereas the latter will focus on the fabrication of Sb2Te3/Bi2Te3 heterostructures. Most of the important properties of the samples are measured under ultra-high vacuum conditions, ensuring reliable results. Furthermore, in situ capping with ordered Te also allows for more sophisticated ex situ experiments.
In a first step, the optimization of Bi2Te3 thin films grown on Al2O3 (0001) substrates was explored. Spectroscopic and structural characterization measurements showed that it is possible to obtain consistently bulk-insulating TI films with good structural quality, despite the lattice mismatch between Bi2Te3 and Al2O3 (0001). Magnetoconductance measurements showed a prominent weak anti-localization effect, confirming the existence of two-dimensional surface states.
In order to explore the consequences of breaking the time-reversal symmetry characteristic of TIs, Bi2Te3 was interfaced with several ferro- or ferrimagnetic insulating (FI) layers in heterostructures. EuO, Fe3O4, Y3Fe5O12 and Tm3Fe5O12 were chosen as possible candidates. Systematic optimization and characterization studies showed that interfaces of Bi2Te3 and EuO, as well as Fe3O4 on top of Bi2Te3, yield poor quality samples with significant chemical reactions between the layers. Nevertheless, high-quality Bi2Te3 could be grown on Fe3O4 (001), Fe3O4 (111), Y3Fe5O12 (111) and Tm3Fe5O12 (111). Clean interfaces and intact top topological surface states were confirmed by photoemission spectroscopy. Moreover, transport signatures of a gap opening in the topological surface states were found, namely a suppression of the weak anti-localization effect and the observation of the anomalous Hall effect. However, x-ray circular magnetic dichroism (XMCD) was not observed for any of the heterostructures. A key conclusion from this study is that the ferromagnetism induced by the magnetic proximity effect is too weak to be detected by XMCD. On hindsight, one can infer that the magnetic proximity effect cannot be strong since the bonding between the TI and the magnetic insulator substrate is of the van der Waals type, and not covalent like in transition metal oxides or metallic heterostructures.
It is known that a charge compensation between electron- and hole-doping can be achieved when combining Bi2Te3 and Sb2Te3, which can also tune the position of the Dirac point. With this goal in mind, the fabrication of ternary (Bi(x)Sb(1−x))2Te3 compounds and Sb2Te3/Bi2Te3 heterostructures was explored in the next step. Although pure Sb2Te3 and (Bi(x)Sb(1−x))2Te3 did not yield good quality samples, the fabrication of Sb2Te3/Bi2Te3 heterostructures emerged as a promising alternative route. Photoelectron spectroscopy allowed not only to identify the crucial role of the first few Sb2Te3 top layers, which modulate the topological surface states, but also to characterize the intermixing of the TI layers at the interface.
In a final study, Fe(1+y)Te thin films were grown on MgO (001) substrates employing a Te-limited growth method. This allowed to obtain nominally stoichiometric films, as evidenced by reflection high-energy electron diffraction, x-ray absorption spectroscopy, XMCD and x-ray diffraction measurements. This preliminary study opens the way for the investigation of TI/superconductor interfaces and to delve into the topological superconductivity arising from the proximity effect.
|
7 |
Quantum transport investigations of low-dimensional electron gases in AlxGa1-xAs/GaAs- and Bi2Se3-based materialsRiha, Christian 30 August 2019 (has links)
Die Transporteigenschaften eines Elektronengases mit reduzierter Dimensionalität
werden von den Welleneigenschaften der Elektronen bestimmt. Dies ermöglicht es,
verschiedene Quanteneffekte, wie Quanteninterferenz, zu beobachten.
Im ersten Teil dieser Arbeit werden geätzte Quantenringe und eindimensionale
(1D) Verengungen, basierend auf AlxGa1-xAs/GaAs-Heterostrukturen, hinsichtlich
ihrer Transporteigenschaften untersucht. Messungen des thermischen Rauschens
im Gleichgewichtszustand zeigen, dass der Erwartungswert mit den Rauschspektren
aller 1D Verengungen übereinstimmt, jedoch um bis zu 60 % bei allen Quantenringen
überschritten wird.
Rauschmessungen im thermischen Nichtgleichgewicht ergeben, dass der Wärmefluss
in Quantenringen mithilfe einer globalen Steuerelektrode (Topgate) an- und
ausgeschaltet werden kann. Die magnetische Widerstandsänderung der Quantenringe
zeigt Oszillationen, die dem Aharonov-Bohm-Effekt zugeordnet werden. Die
Beobachtbarkeit dieser Oszillationen hängt stark von dem Abkühlvorgang der Probe
ab und die Oszillationen zeigen Hinweise auf ein Schwebungsmuster sowie auf Phasenstarre.
Im zweiten Teil der Arbeit werden die Oberflächenzustände von exfolierten Bi2Se3
Mikroflocken untersucht. Für Mikroflocken mit metallischen Temperaturabhängigkeiten
des Widerstandes wurde schwache Anti-Lokalisierung beobachtet. Diese
Beobachtung deutet darauf hin, dass sich die magnetische Widerstandsänderung
weniger ausschließlich aus den 2D Oberflächenkanälen als vielmehr aus einem geschichtetem
Transport von 2D Kanälen im Volumenkörper zusammensetzt. Eine
Mikroflocke mit halbleitenden Eigenschaften zeigt keine Hinweise auf solch einen
geschichteten 2D Transport und es wird angenommen, dass ihre magnetische Widerstandsänderung
ausschließlich von den 2D Oberflächenzuständen verursacht wird. / The transport properties of an electron gas with reduced dimensionality are dominated
by the electron’s wave nature. This allows to observe various quantum effects,
such as quantum interference.
In the first part of this thesis etched quantum rings and one-dimensional (1D)
constrictions, based on AlxGa1-xAs/GaAs heterostructures, are investigated with
respect to their transport properties. Thermal noise measurements in equilibrium
show that the expectation value agrees with the noise spectra of all 1D constrictions
but is exceeded by up to 60 % for the noise spectra of all quantum rings.
Noise measurements in thermal non-equilibrium reveal that the heat flow can
be switched on and off for a quantum ring by a global top-gate. The measured
magnetoresistance of the quantum rings shows oscillations that are attributed to
the Aharonov-Bohm effect. The observability of these oscillations strongly depends
on the cooling process of the sample and the oscillations show indications of a beating
as well as phase rigidity.
In the second part of the thesis the surface states of exfoliated Bi2Se3 microflakes
are studied. For microflakes that show a metallic temperature dependence of the
resistance weak anti-localization is observed. This observation suggests that the
magnetoresistance is a result of layered transport of 2D channels in the bulk rather
than just the surface 2D channels. A microflake with semiconducting characteristics
does not show indications of such a 2D layered transport and its magnetoresistance
is considered to be carried by the 2D surface states only.
|
8 |
Tailoring non-classical states of light for applications in quantum information processingTschernig, Konrad 26 October 2022 (has links)
In dieser Arbeit wird das Design und die Präparation von nicht-klassischen Zuständen von Licht in
verschiedenen Szenarien untersucht. Zunächst wird die theoretische Beschreibung eines
Interferometers entwickelt, welches für die Messung der Teilchenaustauschphase von Photonen
entworfen wurde. Die Analyse der experimentellen Daten offenbart den bosonischen Charakter von
Photonen, sowie die geometrische Phase, welche mit dem physischen Austausch zweier
Quantenzustände assoziiert ist. Nach dieser Feststellung der Austauschsymmetrie von
Zweiphotonenzuständen folgt die Ausarbeitung der Theorie über die Propagation von
Mehrphotonenzuständen in Multiportsystemen. Dabei offenbaren sich hoch-dimensionale,
synthetische, gekoppelte Strukturen die sich aus der Mehrphotonenanregung von diskreten Systemen
ergeben. Basierend auf diesen Resultaten wird eine konkrete Anwendung der Theorie im Kontext von
nicht-hermitischen Systemen formuliert. Dabei ergeben sich sogenannte “exceptional points” höherer
Ordnung, welche Anwendungen im Bereich der Sensorik finden und ferner nur im Raum der
Photonenanzahlzustände von diskreten Systemen realisiert werden können. Neben der Sensorik ist der
Transport von Lichtzuständen ein wichtiger Aspekt in der Verarbeitung von Quanteninformationen. In
dieser Hinsicht werden hier Photonische Topologische Isolatoren untersucht, welche eine
rückstreuungsfreie Propagation entlang ihrer Ränder erlauben. Es wird gezeigt, dass partiell kohärentes
Licht, Gaussisch und Nicht-Gaussisch verschränkte Zweiphotonenzustände einen solchen
topologischen Schutz genießen können. Dies gilt unter der Vorraussetzung, dass die Anfangsanregung
in einem wohldefinierten Bereich des topologischen Schutzes liegt, wodurch das “klassische”
Bandlücken-kriterium erweitert und gestärkt wird. / In this work we study the design and preparation of non-classical states of light in several scenarios.
We begin by developing the theoretical description of an interferometer, which is designed to measure
the particle exchange phase of photons. The analysis of the experimental data reveals the bosonic
nature of photons, as well as the geometric phase associated with the physical exchange of the quantum
states of two photons. Having established the exchange symmetry of two-photon states, we proceed to
develop the theory of multi-photon states propagating in multi-port systems. We unveil the high-
dimensional synthetic coupled structures that arise via the multi-photon excitation of discrete systems.
Using these results, we formulate an application of the theory in the context of non-hermitian systems.
We find so-called high-order exceptional points, which find applications in sensing and can only be
achieved in the photon-number space of discrete systems. Apart from sensing, an important ingredient
for the processing of quantum information is the transport of light states. In this regard, we consider
photonic topological insulators, which allow the back-scattering-free propagation along their edges. We
show that partially coherent light, Gaussian- as well as non-Gaussian two-photon entangled states can
enjoy such a topological protection, provided that the initial excitations fit inside a well defined
topological window of protection, which strengthens the “classical” band-gap protection criterion.
|
9 |
Bismuth Subiodides with Chains of Transition Metal-Stabilised ClustersHerz, Maria Annette 26 February 2024 (has links)
Topological insulators are a novel class of quantum materials wherein the bulk of the material is an insulator, while the surface or edge states are quantum mechanically protected and conducting. This class of materials offers a lot of promise in the fields of quantum computing and spintronics due to their inherent ability to conduct electrons without the loss of any energy over longer distances, thereby theoretically being able to solve the problems of heat accumulation and leaking of electrons due to tunnelling in current devices. To this end, this work focussed on three main objectives: (a) investigate known bismuth structures as hosts for topological and quantum effects, in particular as potential topological insulators; (b) exploring the possibilities of magnetic substitutions in both known weak 3D topological insulators and further bismuth subhalide structures; and (c) gaining an understanding of the formation processes of the aforementioned substitutions into the bismuth subhalide compounds through extensive thermal analyses. This was realised by investigating Bi2[PtBi6I12]3 and Bi14Rh3I9 as host structures, with the former being a topologically trivial compound and the latter a weak 3D topological insulator. Due to previous difficulties in substituting magnetic cations into Bi14Rh3I9, the initial focus of this work lay in substituting magnetic cations into Bi2[PtBi6I12]3. This work then showed that not only could infinite cluster strands containing the [PtBi6I12]2- clusters be formed with Pb, Sn and Sb in the counter-cation site between them, but that magnetic cations such as Mn, Fe and Co could also be substituted into bismuth subhalide structures. The latter in particular gave rise to novel physical properties in this class of compounds and illuminated and helped explain the previous challenges in substituting magnetic cations into the bismuth subhalides.
|
10 |
All in situ ultra-high vacuum study of Bi2Te3 topological insulator thin filmsHöfer, Katharina 29 March 2017 (has links) (PDF)
The term "topological insulator" (TI) represents a novel class of compounds which are insulating in the bulk, but simultaneously and unavoidably have a metallic surface. The reason for this is the non-trivial band topology, arising from particular band inversions and the spin-orbit interaction, of the bulk. These topologically protected metallic surface states are characterized by massless Dirac dispersion and locked helical spin polarization, leading to forbidden back-scattering with robustness against disorder. Based on the extraordinary features of the topological insulators an abundance of new phenomena and many exciting experiments have been proposed by theoreticians, but still await their experimental verification, not to mention their implementation into applications, e.g. the creation of Majorana fermions, advanced spintronics, or the realization of quantum computers.
In this perspective, the 3D TIs Bi2Te3 and Bi2Se3 gained a lot of interest due to their relatively simple electronic band structure, having only a single Dirac cone at the surface. Furthermore, they exhibit an appreciable bulk band gap of up to ~ 0.3 eV, making room temperature applications feasible. Yet, the execution of these proposals remains an enormous experimental challenge. The main obstacle, which thus far hampered the electrical characterization of topological surface states via transport experiments, is the residual extrinsic conductivity arising from the presence of defects and impurities in their bulk, as well as the contamination of the surface due to exposure to air.
This thesis is part of the actual effort in improving sample quality to achieve bulk-insulating Bi2Te3 films and study of their electrical properties under controlled conditions. Furthermore, appropriate capping materials preserving the electronic features under ambient atmosphere shall be identified to facilitate more sophisticated ex-situ experiments. Bi2Te3 thin films were fabricated by molecular beam epitaxy (MBE). It could be shown that, by optimizing the growth conditions, it is indeed possible to obtain consistently bulk-insulating and single-domain TI films. Hereby, the key factor is to supply the elements with a Te/Bi ratio of ~8, while achieving a full distillation of the Te, and the usage of substrates with negligible lattice mismatch. The optimal MBE conditions for Bi2Te3 were found in a two-step growth procedure at substrate temperatures of 220°C and 250°C, respectively, and a Bi flux rate of 1 Å/min. Subsequently, the structural characterization by high- and low-energy electron diffraction, photoelectron spectroscopy, and, in particular, the temperature-dependent conductivity measurements were entirely done inside the same ultra-high vacuum (UHV) system, ensuring a reliable record of the intrinsic properties of the topological surface states. Bi2Te3 films with thicknesses ranging from 10 to 50 quintuple layers (QL; 1QL~1 nm) were fabricated to examine, whether the conductivity is solely arising from the surface states. Angle resolved photoemission spectroscopy (ARPES) demonstrates that the chemical potential for all these samples is located well within the bulk band gap, and is only intersected by the topological surface states, displaying the characteristic linear dispersion. A metallic-like temperature dependency of the sheet resistance is observed from the in-situ transport experiments. Upon going from 10 to 50QL the sheet resistance displays a variation by a factor 1.3 at 14K and of 1.5 at room temperature, evidencing that the conductivity is indeed dominated by the surface. Low charge carrier concentrations in the range of 2–4*10^12 cm^−2 with high mobility values up to 4600 cm2/Vs could be achieved.
Furthermore, the degradation effect of air exposure on the conductance of the Bi2Te3 films was quantified, emphasizing the necessity to protect the surface from ambient conditions. Since the films behave inert to pure oxygen, water/moisture is the most probable source of degeneration. Moreover, epitaxially grown elemental tellurium was identified as a suitable capping material preserving the properties of the intrinsically insulating Bi2Te3 films and protecting from alterations during air exposure, facilitating well-defined and reliable ex-situ experiments. These findings serve as an ideal platform for further investigations and open the way to prepare devices that can exploit the intrinsic features of the topological surface states. / Der Begriff "Topologischer Isolator" (TI) beschreibt eine neuartige Klasse von Verbindungen deren Inneres (engl. Bulk) isolierend ist, dieses Innere aber gleichzeitig und zwangsläufig eine metallisch leitende Oberfläche aufweist. Dies ist begründet in der nicht-trivialen Topologie dieser Materialien, welche durch eine spezielle Invertierung einzelner Bänder in der Bandstruktur und der Spin-Bahn-Kopplung im Materialinneren hervorgerufen ist. Diese topologisch geschützten, metallischen Oberflächenzustände sind gekennzeichnet durch eine masselose Dirac Dispersionsrelation und gekoppelte Helizität der Spinpolarisation, welche die Rückstreuung der Ladungsträger verbietet und somit zur Stabilisierung der Zustände gegenüber Störungen beiträgt. Auf Grundlage dieser außergewöhnlichen Merkmale haben Theoretiker eine Fülle neuer Phänomene und spannender Experimente vorhergesagt. Deren experimentelle Überprüfung steht jedoch noch aus, geschweige denn deren Umsetzung in Anwendungen, wie zum Beispiel die Erzeugung von Majorana Teilchen, fortgeschrittene Spintronik, oder die Realisierung von Quantencomputern.
Aufgrund ihrer relativ einfachen Bandstruktur, welche nur einen Dirac-Kegel an der Oberfläche aufweist, haben die 3D TI Bi2Te3 und Bi2Se3 in den letzten Jahren großes Interesse erlangt. Weiterhin besitzen diese Materialien eine merkliche Bandlücke von bis zu ~0,3 eV, welche sogar Anwendungen bei Raumtemperatur ermöglichen könnten. Dennoch ist deren experimentelle Umsetzung nachwievor eine enorme Herausforderung. Das Haupthindernis, welches bis jetzt insbesondere die elektrische Charakterisierung the topologischen Oberflächenzustände behindert hat, ist die zusätzliche Leitfähigkeit des Materialinneren, welche durch Kristalldefekte und Beimischungen, sowie die Verunreinigung der Probenoberfläche durch Luftexposition bedingt wird.
Die vorliegende Arbeit liefert einen Beitrag zu aktuellen den Anstrengungen in der Verbesserung der Probenqualität der TI um die Leitfähigkeit des Materialinneren zu unterdrücken, sowie die anschließende Untersuchung der elektrischen Eigenschaften unter kontrollierten Bedingungen durchzuführen. Weiterhin sollen geeignete Deckschichten identifiziert werden, welche die besonderen elektronischen Merkmale der TI nicht beeinflussen sowie diese gegen äußere Einflüsse schützen, und somit die Durchführung anspruchsvoller ex situ Experimente ermöglichen können. Die untersuchten Bi2Te3 Schichten wurden mittels Molekularstrahlepitaxie (MBE) hergestellt. Es konnte gezeigt werden, dass es allein durch Optimierung der Wachstumsbedingungen möglich ist Proben herzustellen, die gleichbleibend isolierende Eigenschaften des TI Inneren aufweisen und Eindomänen-Ausrichtung besitzen. Die zentralen Faktoren sind hierbei die Aufrechterhaltung eines Flussratenverhältnisses von Te/Bi ~8 der einzelnen Elemente, sowie die Wahl einer ausreichend hohen Substrattemperatur, um ein vollständiges Abdampfen (Destillation) des überschüssigen Tellur zu erreichen. Weiterhin müssen Substrate mit gut angepassten Gitterparametern verwendet werden, welches bei BaF2 (111) gegeben ist.
Optimales MBE Wachstum konnte durch ein Zwei-Stufen Prozess bei Substrattemperaturen von 220°C und 250°C und einer Bi-Verdampfungsrate von 1 Å/min erreicht werden. Die nachfolgende Charakterisierung der strukturellen Eigenschaften, Photoelektronenspektroskopie, sowie temperaturabhängige Leitfähigkeitsmessungen wurden alle in einem zusammenhängenden Ultrahochvakuum-System durchgeführt. Auf diese Weise wird eine zuverlässige Erfassung der intrinsischen Eigenschaften der TI sichergestellt. Zur Überprüfung, ob die Leitfähigkeit der Proben tatsächlich nur durch die Oberflächenzustände hervorgerufen wird, wurden Filme mit Schichtdicken im Bereich von 10 bis 50 Quintupel-Lagen (QL; 1QL~ 1 nm) hergestellt und charakterisiert.
Winkelaufgelöste Photoelektronenspektroskopie (ARPES) belegt, dass das chemische Potential (Fermi-Niveau) in allen Proben innerhalb der Bandlücke der Bandstruktur des Materialinneren liegt und nur von den topologisch geschützten Oberflächenzuständen gekreuzt wird, welche die charakteristische lineare Dirac Dispersionsrelation aufweisen. Die temperaturabhängigen Widerstandsmessungen zeigen ein metallisches Verhalten aller Proben. Bei der Variation der Schichtdicke von 10 zu 50QL wird eine Streuung des Flächenwiderstandes vom Faktor 1,3 bei 14K und 1,5 bei Raumtemperatur beobachtet. Dies beweist, dass die gemessene Leitfähigkeit vorrangig durch die topologisch geschützten Oberflächenzustände hervorgerufen wird. Eine geringe Oberflächenladungsträgerkonzentration im Bereich von 2–4*10^12 cm^−2 und hohe Mobilitätswerte von bis zu 4600 cm2/Vs wurden erreicht.
Weiterhin wurden die negativen Auswirkungen auf die Eigenschaften der TI durch Luftexposition quantifiziert, welches die Notwendigkeit belegt, die Oberfläche der TI vor Umgebungseinflüssen zu schützen. Die Proben verhalten sich inert gegenüber reinem Sauerstoff, daher ist Wasser aus der Luftfeuchte höchstwahrscheinlich der Hauptgrund für die beobachtbare Verschlechterung. Darüber hinaus konnte epitaktisch gewachsenes Tellur als geeignete Deckschicht ausfindig gemacht werden, welches die Eigenschaften der Bi2Te3 Filme nicht beeinflusst, sowie gegen Veränderungen durch Luftexposition schützt. Die gewonnenen Erkenntnisse stellen eine ideale Grundlage für weiterführende Untersuchungen dar und ebnen den Weg zur Entwicklung von Bauelementen welche die spezifischen Besonderheiten der topologischen Oberflächenzustände.
|
Page generated in 0.1409 seconds