11 |
Asymptotics of Hecke operators for quasi-split simple groupsEikemeier, Christoph 15 September 2022 (has links)
“Can one hear the shape of a drum?” This seemingly innocent question spawned a lot of research in the early 20th century. Even though the answer is “No, we can't”, we can hear the volume. This is known as Weyl's Law.
In a more modern context, we can use new methods to study similar questions. More precisely, we can study locally symmetric spaces and the algebra of invariant differential operators. Generalizing the above, we can incorporate Hecke operators and find asymptotic formulas for their traces.
We study this problem in a global context, namely if the underlying group is the group of adelic points of a quasi-split, simple reductive group.
Our main tool is the Arthur-Selberg trace formula. The spectral side is dealt with, utilizing a condition on the normalizing factors of certain intertwining operators. The geometric side is more complicated and needs a more refined analysis. Most importantly, the test functions need to be specifically crafted to ensure compact support on the one hand, and sufficiently strong estimates on the other. The resulting geometric side can be split according to the Bruhat decomposition and treated separately, using various methods from reduction theory to algebraic and analytic number theory.
|
12 |
Second-Order Trace Formulas in Szegö-type TheoremsVasilyev, Vladimir 15 February 2007 (has links) (PDF)
A new way of proof of Szegö-type theorems is
presented. The idea of the proof is based on the
construction of "almost" inverse operator to
the finite section T_n(a) of a Toeplitz operator T(a),
which is close to the inverse operator in the trace
norm (these "almost" inverses are well-known).
This way of proof gives the possibility to write
another representation for the second constant
E_f(a), and in the scalar case to receive a
shorter representation. Another observation is
that the convergence in these theorems is
strongly dependent on the smoothness of the
generating function a.
|
13 |
Modified Stochastic Sine-Gordon EquationTalafha, Abdallah M. 01 December 2014 (has links)
The main focus of my dissertation is the Modified Stochastic Sine-Gordon Equation: utt = 2uxx − ut − sin(|u|^(&gamma)) + b(u, du/dt)dW/dt where &gamma > 0 is the parameter of the power of non-linearity, &delta &ge 0 is the magnitude of non-linearity, &alpha> 0 be the damping parameter, and &sigma the diffusion intensity, on one dimensional domain. We analyze the properties of the solution of the SPDE by the eigenfunctions approach allowing us to truncate the infinite-dimensional stochastic system (i.e the SDEs of Fourier coefficients related to the SPDE), to control its energy, existence, uniqueness, continuity and stability. The analysis relies on the investigation of expected Lyapunov functional of the energy in terms of all system-parameters. We simulate the model with respect to all system-parameters to visualize our conclusions.
|
14 |
Limit Multiplicity ProblemGupta, Vishal 18 July 2018 (has links)
Let $G$ be a locally compact group (usually a reductive algebraic group over an algebraic number field $F$). The main aim of the theory of Automorphic Forms is to understand the right regular representation of the group $G$ on the space $L^{2}(\Gamma \ G)$ for certain \emph{nice} closed subgroups $\Gamma$. Usually, $\Gamma$ is taken to be a lattice or even an arithmetic subgroup.
In the case of uniform lattices, the space $L^{2}(\Gamma \ G)$ decomposes into a direct sum of irreducible unitary representations of the group $G$ with each such representation $\pi$ occurring with a \emph{finite} multiplicity $m(\Gamma, \pi)$. It seems quite difficult to obtain an explicit formula for this multiplicity; however, the limiting behaviour of these numbers in case of certain \emph{nice} sequences of subgroups $(\Gamma_{n})_{n}$ seems more tractable.
We study this problem in the global set-up where $G$ is the group of adelic points of a reductive group defined over the field of rational numbers and the relevant subgroups are the maximal compact open subgroups of $G$. As is natural and traditional, we use the Arthur trace formula to analyse the multiplicities. In particular, we expand the geometric side to obtain the information about the spectral side---which is made up from the multiplicities $m(\Gamma, \pi)$.
The geometric side has a contributions from various conjugacy classes, most notably from the unipotent conjugacy class. It is this \emph{unipotent} contribution that is the subject of Part III of this thesis. We estimate the contribution in terms of level of the maximal compact open subgroup and make conclusions about the limiting behaviour.
Part IV is then concerned with the spectral side of the trace formula where we show (under certain conditions) that the trace of the discrete part of the regular representation is the only term that survives in the limit.
|
15 |
Surfaces de Riemann compactes et formule de trace d'EichlerDe Benedictis, Sonia 01 1900 (has links)
Dans ce mémoire, nous étudierons quelques propriétés algébriques, géométriques et topologiques des surfaces de Riemann compactes.
Deux grand sujets seront traités.
Tout d'abord, en utilisant le fait que toute surface de Riemann compacte de genre g plus grand ou égal à 2 possède un nombre fini de points de Weierstrass, nous allons pouvoir conclure que ces surfaces possèdent un nombre fini d'automorphismes.
Ensuite, nous allons étudier de plus près la formule de trace d'Eichler. Ce théorème nous permet de trouver le caractère d'un automorphisme agissant sur l'espace des q-différentielles holomorphes.
Nous commencerons notre étude en utilisant la quartique de Klein. Nous effectuerons un exemple de calcul utilisant le théorème d'Eichler, ce qui nous permettra de nous familiariser avec l'énoncé du théorème.
Finalement, nous allons démontrer la formule de trace d'Eichler, en prenant soin de traiter le cas où l'automorphisme agit sans point fixe séparément du cas où l'automorphisme possède des points fixes. / In this thesis, we will study several algebraic, geometrical and topological properties of compact Riemann surfaces.
Two principal subjects will be treated.
First, using the fact that every compact Riemann surfaces of genus g greater or equal to 2 has a finite number of Weierstrass points, we will be able to prove that those surfaces have a finite number of automorphism.
Afterward, we will study the Eichler's trace formula. This formula allow us to find the character of an automorphism acting on the space of holomorphic q-differentials.
We will start our study using Klein's quartic curve. We will apply Eichler's formula in this case, which will allow us to familiarize ourselves with the statement of the theorem.
Finally, we will demonstrate the Eichler's trace formula, treating the case where the automorphism acts fixed point freely separately from the case where the automorphism has fixed points.
|
16 |
Filtrations de Hodge-Newton, décomposition cellulaire et cohomologie de certains espaces de modules p-adiques / Hodge-Newton filtrations, cell decomposition and cohomology of certain p-adic moduli spacesShen, Xu 06 December 2012 (has links)
Dans cette thèse, nous étudions la géométrie analytique p-adique et la cohomologie l-adique de certains espaces de Rapoport-Zink, en utilisant la théorie des filtrations de Harder-Narasimhan des schémas en groupes finis et plats élaborée par Fargues.Cette thèse se compose de trois parties. La première partie traite de certains espaces de Rapoport-Zink non-basiques, qui satisfont à la condition que leur polygone de Newton et polygone de Hodge ont un point de contact non-trivial, qui est un point de rupture pour le polygone de Newton. Sous cette hypothèse, nous prouvons que ces espaces de Rapoport-Zink peuvent être décomposés en une somme directe d'espaces de modules des types de Rapoport-Zink associés à certains sous-groupes paraboliques appropriés, donc leurs cohomologie l-adique sont des induites paraboliques et en particulier ne contiennent pas de représentations supercuspidales. Nous prouvons ces faits en démontrant d'abord un théorème sur la filtration de Hodge-Newton pour les groupes p-divisibles avec des structures additionelles sur des anneaux de valuation complets de rang un et de caractéristique mixte (0,p).Dans la deuxième partie, nous considérons les espaces de Rapoport-Zink basiques de signature (1,n-1) pour les groupes unitaires associés à l'extension quadratique non ramifiée de Qp. On étudie l'action de Hecke sur ces espaces en détails. En utilisant la théorie des filtrations de Harder-Narasimhan des schémas en groupes finis et plats, et la stratification de Bruhat-Tits de la fibre spéciale réduite Mred étudié par Vollaard-Wedhorn, on trouve un certain domaine analytique compact DK telle que ses itérés dans le groupe G(Qp)×Jb(Qp) forme un recouvrement localement fini de tout l'espace MK. Nous appelons un tel phénomène une décomposition cellulaire localement finie.Dans la troisième partie, nous démontrons une formule de Lefschetz pour ces espaces pour l'action des éléments semi-simples réguliers elliptiques, en tenant compte de l'action de ces éléments sur les cellules et en appliquant le théorème principal de Mieda. De la même manière, nous pouvons aussi reprouver la formule de Lefschetz pour les espaces de Lubin-Tate précédemment obtenue par Strauch et Mieda. Cette formule de Lefschetz devrait caractériser la réalisation de correspondances de Jacquet-Langlands locales pour les groupes unitaires dans la cohomologie l-adique de ces espaces de Rapoport-Zink, dès que certains problèmes correspondants de théorie des représentations auront été résolus. / In this thesis we study p-adic analytic geometry and l-adic cohomology of some Rapoport-Zink spaces, using the theory of Harder-Narasimhan filtration of finite flat group schemes developed by Fargues .This thesis consists of three parts. The first part deals with some non-basic Rapoport-Zink spaces, which satisfy the condition that their Newton polygon and Hodge polygon have a non-trivial contact point, which is a breakpoint for the Newton polygon. Under this hypothesis, we prove these Rapoport-Zink spaces can be decomposed as a direct sum of smaller Rapoport-Zink spaces associated to some suitable parabolic subgroups, thus their l-adic cohomology is parabolically induced and in particular contain no supercuspidal representations. We prove these facts by first proving a theorem about the Hodge-Newton filtration for p-divisible groups with additional structures over complete valuation rings of rank one and mixed characteristic (0,p).In the second part, we consider the basic Rapoport-Zink spaces with signature (1,n-1) for the unitary groups associated to the unramified quadratic extension of Qp. We study the Hecke action on these spaces in details. By using the theory of Harder-Narasimhan filtrations of finite flat group schemes, and the Bruhat-Tits stratification of the reduced special fiber Mred studied by Vollaard-Wedhorn, we find some compact analytic domain DK such that its translates under the group G(Qp)×Jb(Qp) form a locally finite cover of the whole space MK. We call such a phenomenon a locally finite cell decomposition.In the third part we prove a Lefschetz trace formula for these spaces for the action of regular semi-simple elliptic elements, by considering the action of these elements on the cells and applying Mieda's main theorem. In the same way we can also reprove the Lefschetz trace formula for Lubin-Tate spaces as previously obtained by Strauch and by Mieda. This Lefschetz trace formula should characterize the realization of local Jacquet-Langlands correspondences for unitary groups in the l-adic cohomology of these Rapoport-Zink spaces, as soon as some corresponding representation theoretic problems are solved.
|
17 |
Explicit GL(2) trac formulas and uniform, mixed Weyl laws / Exlpizite GL(2) Spurformeln und uniforme, gemischte Weyl'sche GesetzePalm, Marc 21 September 2012 (has links)
No description available.
|
18 |
Surfaces de Riemann compactes et formule de trace d'EichlerDe Benedictis, Sonia 01 1900 (has links)
Dans ce mémoire, nous étudierons quelques propriétés algébriques, géométriques et topologiques des surfaces de Riemann compactes.
Deux grand sujets seront traités.
Tout d'abord, en utilisant le fait que toute surface de Riemann compacte de genre g plus grand ou égal à 2 possède un nombre fini de points de Weierstrass, nous allons pouvoir conclure que ces surfaces possèdent un nombre fini d'automorphismes.
Ensuite, nous allons étudier de plus près la formule de trace d'Eichler. Ce théorème nous permet de trouver le caractère d'un automorphisme agissant sur l'espace des q-différentielles holomorphes.
Nous commencerons notre étude en utilisant la quartique de Klein. Nous effectuerons un exemple de calcul utilisant le théorème d'Eichler, ce qui nous permettra de nous familiariser avec l'énoncé du théorème.
Finalement, nous allons démontrer la formule de trace d'Eichler, en prenant soin de traiter le cas où l'automorphisme agit sans point fixe séparément du cas où l'automorphisme possède des points fixes. / In this thesis, we will study several algebraic, geometrical and topological properties of compact Riemann surfaces.
Two principal subjects will be treated.
First, using the fact that every compact Riemann surfaces of genus g greater or equal to 2 has a finite number of Weierstrass points, we will be able to prove that those surfaces have a finite number of automorphism.
Afterward, we will study the Eichler's trace formula. This formula allow us to find the character of an automorphism acting on the space of holomorphic q-differentials.
We will start our study using Klein's quartic curve. We will apply Eichler's formula in this case, which will allow us to familiarize ourselves with the statement of the theorem.
Finally, we will demonstrate the Eichler's trace formula, treating the case where the automorphism acts fixed point freely separately from the case where the automorphism has fixed points.
|
19 |
Comptage des systèmes locaux ℓ-adiques sur une courbe / Counting ℓ-adic local systems on a curveYu, Hongjie 10 July 2018 (has links)
Soit X1 une courbe projective lisse et géométriquement connexe sur un corps fini Fq avec q = pn éléments où p est un nombre premier. Soit X le changement de base de X1 à une clôture algébrique de Fq. Nous donnons une formule pour le nombre des systèmes locaux ℓ-adiques (ℓ ≠ p) irréductibles de rang donné sur X fixé par l’endomorphisme de Frobenius. Nous montrons que ce nombre est semblable à une formule de point fixe de Lefschetz pour une variété sur Fq, ce qui généralise un résultat de Drinfeld en rang 2 et prouve une conjecture de Deligne. Pour ce faire, nous passerons du côté automorphe, utiliserons la formule des traces d’Arthur non-invariante, et relierons le nombre cherché avec le nombre Fq-points de l’espace des modules des fibrés de Higgs stables. / Let X1 be a projective, smooth and geometrically connected curve over Fq with q = pn elements where p is a prime number, and let X be its base change to an algebraic closure of Fq.We give a formula for the number of irreducible ℓ-adic local systems (ℓ ≠ p) with a fixed rank over X fixed by the Frobenius endomorphism.We prove that this number behaves like a Lefschetz fixed point formula for a variety over Fq, which generalises a result of Drinfeld in rank 2 and proves a conjecture of Deligne. To do this, we pass to the automorphic side by Langlands correspondence, then use Arthur’s non-invariant trace formula and link this number to the number of Fq-points of the moduli space of stable Higgs bundles.
|
20 |
Laplacien hypoelliptique et formule des traces tordue / Hypoelliptic Laplacian and twisted trace formulaLiu, Bingxiao 15 June 2018 (has links)
Dans cette thèse, on donne une formule géométrique explicite pour les intégrales orbitales semisimples tordues du noyau de la chaleur sur un espace symétrique, en utilisant la méthode du laplacien hypoelliptique développée par Bismut. On montre que nos résultats sont compatibles avec les résultats classiques de la théorie de l'indice équivariant local sur les espaces localement symétriques compacts. On utilise notre formule explicite pour évaluer le terme dominant dans l'asymptotique quand d -> + ∞ de la torsion analytique équivariante de Ray-Singer associée à une famille de fibrés vectoriels plats Fd sur un espace localement symétrique compact. On montre que le terme dominant peut être calculé à l'aide de W-invariants au sens de Bismut-Ma-Zhang. / In this thesis, we give an explicit geometric formula for the twisted semisimple orbital integrals associated with the heat kernel on symmetric spaces. For that purpose, we use the method of the hypoelliptic Laplacian developed by Bismut. We show that our results are compatible with classical results in local equivariant index theory. We also use this formula to evaluate the leading term of the asymptotics as d -> + ∞ of the equivariant Ray-Singer analytic torsion associated with a sequence of flat vector bundles Fd on a compact locally symmetric space. We show that the leading term can be evaluated in terms of the W-invariants constructed by Bismut-Ma-Zhang.
|
Page generated in 0.1769 seconds