• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 232
  • 60
  • 51
  • 49
  • 37
  • 20
  • 14
  • 12
  • 9
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 566
  • 94
  • 77
  • 52
  • 51
  • 51
  • 47
  • 44
  • 43
  • 42
  • 41
  • 40
  • 39
  • 39
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Evolutionary Clustering Search para Planejamento de Circulação de Trens de Carga / Evolutionary Clustering Search for Freight Train Circulation Planning

PINHEIRO, Eggo Henrique Freire 19 July 2017 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-10-31T20:55:43Z No. of bitstreams: 1 eggo_pinheiro.pdf: 1913399 bytes, checksum: d95298cbe73fd1e96bc181f116178ffa (MD5) / Made available in DSpace on 2017-10-31T20:55:43Z (GMT). No. of bitstreams: 1 eggo_pinheiro.pdf: 1913399 bytes, checksum: d95298cbe73fd1e96bc181f116178ffa (MD5) Previous issue date: 2017-07-19 / Freight railways are the major means of transportation of bulk material, such as iron ore from the origin to the destination. Usually for heavy haul railways, the destination is a port. For the last few years there has been a fast growing demand. However, railway infrastructure capacity increasing is very expensive and require a lot of investiment budget. Therefore, an improvement of train scheduling process is needed to ensure the best and efficient use of the current railway. Nevertheless, in some situations it is overwhelmingly complex to solve, an NP-hard problem. Since all the previous work provided on the Train Timetable Problem is usually only applied locally to a single railway, this work provides a public base benchmark of test railways built by heuristcs. Moreover, this work deals with the train timetabling problem applied to mixed traffic railways with both cargo trains and passenger trains sharing the same resources with different priorities. It is proposed a new mathematical model extended from literature previous work intended to avoid infeasible solutions instead reparing or discarding on these cases. This model contains additional support for parallel multi-track for several railway’s signaling system approaches context as well as overtaking on it without deadlocks possibility. This model considers trains in current position and future departure planned. To achieve an improved train scheduling is applied the Evolutionary Clustering Search (ECS) with multi heuristics approaches and a modified mutation operator of Genetic Algorithm as component of ECS. The experiments shows ECS outperforms almost all tests scenario and the modified mutation operator strongly improve the results / Ferrovias de trens de carga são os principais meios de transporte de materiais, tais como minério de ferro, da sua origem até o seu destino. Geralmente para ferrovias de transporte pesado, o destino é o porto. Nos últimos anos, a demanda de produção tem aumentado assim como o uso da ferrovia para transportá-la, no entanto, a expansão da sua infraestrutura requer um grande investimento. Assim, um planejamento de circulação de trens mais efetivo que maximize a capacidade de tráfego se faz necessária. No entanto, em algumas situações a sua otimização é bastante complexa para ser executada, um problema NP-Difícil. Embora todo trabalho elaborado nesse tema é geralmente aplicado localmente em uma única ferrovia, este trabalho provê uma base genérica de ferrovias gerado por heurísticas. Além disso, esta dissertação lida com o problema de circulação de trens aplicado a ferrovias mistas envolvendo trens de carga assim como trens de passageiros compartilhando o mesmo recurso e com diferentes prioridades. É proposto um novo modelo matemático estendido de um trabalho existente na literatura que procura evitar conflitos ao invés de permitir soluções inviáveis, sendo necessário reparação delas ou descarte. Este modelo lida com uma quantidade variável de linhas em locais de parada compatível com várias abordagens de sistema de sinalização disponíveis, assim como considera ultrapassagens de forma a evitar deadlocks, da mesma forma que trata contextos de trens em circulação como planejados para realizar a otimização. Para encontrar boas soluções, ao planejamento de circulação de trens é aplicado uma abordagem do Evolutionary Clustering Search (ECS) com múltiplas heurísticas, e um operador de mutação modificado do Algoritmo Genético como componente do ECS. Os experimentos computacionais mostraram que o ECS superou quase todos os cenários de teste e o operador de mutação modificado melhorou significativamente os resultados finais.
282

The inter-ethnic relationship between Serbs and Albanians : A field study in Kosovo

Johansson, Alex January 2018 (has links)
The inter-ethnic conflict between Serbs and Albanians in Kosovo have persisted since the war in Kosovo in 1999, even though it has been improved in recent years. A friendly relationship between Serbs and Albanians in Kosovo is vital for the future of Kosovo, and for the security in the Balkan region. The aim with this study is to explain how the relationship between Serbs and Albanians has changed since Kosovo’s declaration of independence in 2008. Interviews have been conducted with six Serbs and six Albanians living in Kosovo. The interviews were mainly based on three key moments which were considered to have had an influence on the inter-ethnic relationship. The results from the interviews showed that these three key moments have resulted in antagonism between, but also within the two ethnic groups. However, the growth of antagonism seems to have been a consequence of how politicians and media on both sides in Kosovohave handled these key moments, rather than as a consequence of the key moments per se.
283

An integrated multibody dynamics computational framework for design optimization of wind turbine drivetrains considering wind load uncertainty

Li, Huaxia 01 December 2016 (has links)
The objective of this study is to develop an integrated multibody dynamics computational framework for the deterministic and reliability-based design optimization of wind turbine drivetrains to obtain an optimal wind turbine gear design that ensures a target reliability under wind load and gear manufacturing uncertainties. Gears in wind turbine drivetrains are subjected to severe cyclic loading due to variable wind loads that are stochastic in nature. Thus, the failure rate of drivetrain systems is reported to be relatively higher than the other wind turbine components. It is known in wind energy industry that improving reliability of drivetrain designs is one of the key issues to make wind energy competitive as compared to fossil fuels. Furthermore, a wind turbine is a multi-physics system involving random wind loads, rotor blade aerodynamics, gear dynamics, electromagnetic generator and control systems. This makes an accurate prediction of product life of drivetrains challenging and very limited studies have been carried out regarding design optimization including the reliability-based design optimization (RBDO) of geared systems considering wind load and manufacturing uncertainties. In order to address these essential and challenging issues on design optimization of wind turbine drivetrains under wind load and gear manufacturing uncertainties, the following issues are discussed in this study: (1) development of an efficient numerical procedure for gear dynamics simulation of complex multibody geared systems based on the multi-variable tabular contact search algorithm to account for detailed gear tooth contact geometry with profile modifications or surface imperfections; (2) development of an integrated multibody dynamics computational framework for deterministic and reliability-based design optimization of wind turbine drivetrains using the gear dynamics simulation software developed in (1) and RAMDO software by incorporating wide spatiotemporal wind load uncertainty model, pitting gear tooth contact fatigue model, and rotor blade aerodynamics model using NREL AeroDyn/FAST; and (3) deterministic and reliability-based design optimization of wind turbine drivetrain to minimize total weight of a drivetrain system while ensuring 20-year reliable service life with wind load and gear manufacturing uncertainties using the numerical procedure developed in this study. To account for the wind load uncertainty, the joint probability density function (PDF) of 10-minute mean wind speed (V₁₀) and 10-minute turbulence intensity (I₁₀) is introduced for wind turbine drivetrain dynamics simulation. To consider wide spatiotemporal wind uncertainty (i.e., wind load uncertainty for different locations and in different years), uncertainties of all the joint PDF parameters of V₁₀, I₁₀ and copula are considered, and PDF for each parameter is identified using 249 sets of wind data. This wind uncertainty model allows for the consideration of a wide range of probabilistic wind loads in the contact fatigue life prediction. For a given V₁₀ and I₁₀ obtained from the stochastic wind model, the random time-domain wind speed data is generated using NREL TurbSim, and then inputted into NREL FAST to perform the aerodynamic simulation of rotor blades to predict the transmitted torque and speed of the main shaft of the drivetrain that are sent to the multibody gear dynamics simulation as an input. In order to predict gear contact fatigue life, a high-fidelity gear dynamics simulation model that considers the detailed gear contact geometry as well as the mesh stiffness variation needs to be developed to find the variability of maximum contact stresses under wind load uncertainty. This, however, leads to a computationally intensive procedure. To eliminate the computationally intensive iterative online collision detection algorithm, a numerical procedure for the multibody gear dynamics simulation based on the tabular contact search algorithm is proposed. Look-up contact tables are generated for a pair of gear tooth profiles by the contact geometry analysis prior to the dynamics simulation and the contact points that fulfill the non-conformal contact condition and mesh stiffness at each contact point are calculated for all pairs of gears in the drivetrain model. This procedure allows for the detection of gear tooth contact in an efficient manner while retaining the precise contact geometry and mesh stiffness variation in the evaluation of mesh forces, thereby leading to a computationally efficient gear dynamics simulation suited for the design optimization procedure considering wind load uncertainty. Furthermore, the accuracy of mesh stiffness model introduced in this study and transmission error of gear tooth with tip relief are discussed, and a wind turbine drivetrain model developed using this approach is validated against test data provided in the literature. The gear contact fatigue life is predicted based on the gear tooth pitting fatigue criteria and is defined by the sum of the number of stress cycles required for the fatigue crack initiation and the number required for the crack to propagate from the initial to the critical crack length based on Paris-Erdogan equation for Mode II fracture. All the above procedures are integrated into the reliability-based design optimization software RAMDO for design optimization and reliability analysis of wind turbine drivetrains under wind load and manufacturing uncertainties. A 750kW GRC wind turbine gearbox model is used to perform the design optimization and the reliability analysis. A deterministic design optimization (DDO) is performed first using an averaged joint PDF of wind load to ensure a 20-year service life. To this end, gear face width and tip relief (profile modification) are selected as design variables and optimized such that 20-year fatigue life is ensured while minimizing the total weight of drivetrains. It is important to notice here that an increase in face width leads to a decrease in the fatigue damage, but an increase in total weight. On the other hand, the tip relief has almost no effect on the total weight, but it has a major impact on the fatigue damage. It is shown in this study that the optimum tip relief allows for lowering the greatest maximum shear stresses on the tooth surface without relying heavily on face width widening to meet the 20-year fatigue life constraint and it leads to reduction of total drivetrain weight by 8.4%. However, if only face width is considered as design variable, total weight needs to be increased by 4.7% to meet the 20-year fatigue life constraint. Furthermore, the reliability analysis at the DDO optimum design is carried out considering the large spatiotemporal wind load uncertainty and gear manufacturing uncertainty. Local surrogate models at DDO optimum design are generated using Dynamic Kriging method in RAMDO software to evaluate the gear contact fatigue damage. 49.5% reliability is obtained at the DDO optimum design, indicating that the probability of failure is 50.5%, which is as expected for the DDO design. RBDO is, therefore, necessary to further improve the reliability of the wind turbine drivetrain. To this end, the sampling-based reliability analysis is carried out to evaluate the probability of failure for each design using the Monte Carlo Simulation (MCS) method. However, the use of a large number of MCS sample points leads to a large number of contact fatigue damage evaluation time using the 10-minute multibody drivetrain dynamics simulation, resulting in the RBDO calculation process being computational very intensive. In order to overcome the computational difficulty resulting from the use of high-fidelity wind turbine drivetrain dynamics simulation, intermediate surrogate models are created prior to the RBDO process using the Dynamic Kriging method in RAMDO and used throughout the entire RBDO iteration process. It is demonstrated that the RBDO optimum obtained ensures the target 97.725 % reliability (two sigma quality level) with only 1.4 % increase in the total weight from the baseline design with 8.3 % reliability. This result clearly indicates the importance of incorporating the tip relief as a design variable that prevents larger increase in the face width causing an increase in weight. This, however, does not mean that a larger tip relief is always preferred since an optimum tip relief amount depends on stochastic wind loads and an optimum tip relief cannot be found deterministically. Furthermore, accuracy of the RBDO optimum obtained using the intermediate surrogate models is verified by the reliability analysis at the RBDO optimum using the local surrogate models. It is demonstrated that the integrated design optimization procedure developed in this study enables the cost effective and reliable design of wind turbine drivetrains.
284

Characterization of Temporal Interactions in the Auditory Nerve of Adult and Pediatric Cochlear Implant Users

Dhuldhoya, Aayesha Narayan 01 July 2013 (has links)
Current cochlear implant systems use fast pulsatile stimulation to deliver the temporal modulations of speech and to, potentially, improve the neural representation of such modulations by restoring the independence of neural firing. The realization of these benefits may vary with other pulse rate-dependent temporal interactions that occur at the neural membrane, e.g., per(i)stimulatory adaptation and its post-stimulatory or forward masking effects. This study attempted to characterize adaptation and recovery of the electrically evoked compound action potential (ECAP) using probe pulses delivered within and following brief (100 ms) high-rate masker (1800 pps) pulse trains at various current levels in adults and children. With this stimulus paradigm, the ECAP amplitude typically achieved a steady state during the course of pulse train stimulation. The ECAP amplitude at steady state was, on average, a similar proportion (50-70%) of the amplitude at onset for various stimulus levels and in both age groups. However, long-term adaptation effects, evidenced by the decrease in onset ECAP amplitude, were greater in adults particularly at lower levels in the ECAP dynamic range. Instances of alternation in ECAP amplitude were seen at stimulus levels that were higher in the ECAP dynamic range. The forward masking effects of pulse train stimulation were quantified by the ECAP amplitude in response to a subsequent probe pulse normalized by the response to the same pulse presented alone. Pulse train forward masking increased with the level of the masker pulse train and decreased with the level of the probe stimulus. The recovery of the ECAP for probes that were lower in level than the masker pulse train was incomplete at 600 ms after masker offset, consistent with long-term cumulative effects observed in the response to the probe alone. Masker pulse trains that are lower in level than the probe pulse produced proportionally small decrements in the ECAP amplitude with complete recovery within 250 ms of pulse train offset particularly in adults. ECAP recovery of a probe preceded by a masker pulse train of equal level followed a monotonic or non-monotonic pattern consistent with a hypothesis of both adaptation and facilitation occurring with pulse train stimulation. The various patterns of recovery may attest to the occurrence of more than a single process in the same subset of nerve fibers or in different fibers. We hypothesize that the variations in the recovery patterns may be attributable to individual differences in the status of the auditory nerve and possibly, the variations in temporal interactions across the spatial domain at different stimulus levels. Finally, the probe-evoked ECAP amplitude at steady state in children and briefly, e.g., 20 ms, after pulse train offset in both age groups could be predicted by the ECAP amplitude in response to the same probe pulse when preceded at a brief interval (1.2 or 2 ms) by a single masker pulse of the same level as the masker pulse train. Further investigation may reveal if the observed differences in neural responsiveness to pulsatile stimulation, among individuals account for differences in psychophysical measures, including speech perception and whether there may be an "optimal" neural output that could be evoked by an individually "optimized" signal.
285

Hur noggrant kan kontaktkrafter mellen hjul och järnvägsräl mätas? / How accurately can wheel/rail contact forces be measured?

Johnsson, Stefan, Kulenovic, Isak January 2005 (has links)
<p>Det finns flera olika metoder att väga ett tåg samt att detektera hjulskador såsom hjulplattor då ett tåg är i drift. I dagsläget används töjningsgivare som monteras på rälen och som kalibreras efter en statisk last. Kalibreringen går till så att ett tåg med känd last sakta passerar över givaren. Detta arbete avser att studera hur eventuella dynamiska effekter påverkar sådana mätningar. Dessa mätmetoder ska undersökas för att få reda på hur tillförlitliga de är. </p><p>Olika FEM-simuleringar utförs för att undersöka de dynamiska effekterna. Dels studeras en konstant åkande kraft och dels studeras en åkande kraft bestående av en konstant och en harmonisk (sinusvarierande) del. Skjuvspänningsfördelningen i rälen bestäms och den kan sedan räknas om till tvärkraft, varefter den passerande lasten kan beräknas. Rapporten behandlar även simuleringar av hjulplattor, vågutbredning, kontakttider samt hur en last med varierande frekvens och hastighet påverkar sådana mätningar. </p> / <p>Several different methods to weigh railway trains and to detect wheelflats are in use. One method make use of strain gauges calibrated with a static load. This means that a train with a known axle load slowly passes the gauge that is calibrated. The work presented here aims at studying how dynamic train/track interaction influences the shear stress in the rail. </p><p>Different FEM-analyses have been performed to study this. On the one hand analyses with a constant force travelling along the rail have been performed and on the other hand a travelling force that consists of a constant part and a harmonic part was used. The shear stress distribution in the rail gives the possibility to calculate the magnitude of the travelling force passing the gauge. The report also deals with detecting wheelflats, that is, detecting when an impact load hits the rail.</p>
286

Chained Thoughts Broken by Chains of Thought : An Analysis of the Narrative Style Used in Virginia Woolf's A Room of One's Own

Johansson, Ellen January 2006 (has links)
<p>Abstract</p><p>Chained Thoughts Broken by Chains of Thought</p><p>An Analysis of the Narrative Style Used in Virginia Woolf’s A Room of One’s Own</p><p>The purpose of this essay is to analyse the narrative style used in Virginia Woolf’s A Room of One’s Own in order to show in which ways it supports and reinforces the author’s arguments in her quest for a more equal society. One of the most prominent stylistic means applied by Woolf is her ‘train of thought’, linking one reflection to another like wagons in a railway convoy or like loops in a chain (therefore also sometimes referred to as ‘chain of thought’ in dictionaries). By examining how different rhetorical devices are applied within this train or chain of thought and in which ways these strategies are linked to the main elements of persuasion (ethos, pathos and logos) in Aristotelian Rhetoric, I have found that one of Woolf’s central themes - the resentment against confinement and the advocacy of androgyny or mixed-gendered thinking - is mirrored in her style. It reflects the author’s call to resist society’s restrictions by its unrestricted combination of different rhetorical strategies; this mixture of stylistic, partly gender-neutral devices helps her to create a common ground where she can reach and appeal to both genders in a very effective and innovative way, thus enabling her chain of thoughts to break some of our chained thoughts.</p><p>Ellen Johansson</p><p>Engelska C</p>
287

Hur noggrant kan kontaktkrafter mellen hjul och järnvägsräl mätas? / How accurately can wheel/rail contact forces be measured?

Johnsson, Stefan, Kulenovic, Isak January 2005 (has links)
Det finns flera olika metoder att väga ett tåg samt att detektera hjulskador såsom hjulplattor då ett tåg är i drift. I dagsläget används töjningsgivare som monteras på rälen och som kalibreras efter en statisk last. Kalibreringen går till så att ett tåg med känd last sakta passerar över givaren. Detta arbete avser att studera hur eventuella dynamiska effekter påverkar sådana mätningar. Dessa mätmetoder ska undersökas för att få reda på hur tillförlitliga de är. Olika FEM-simuleringar utförs för att undersöka de dynamiska effekterna. Dels studeras en konstant åkande kraft och dels studeras en åkande kraft bestående av en konstant och en harmonisk (sinusvarierande) del. Skjuvspänningsfördelningen i rälen bestäms och den kan sedan räknas om till tvärkraft, varefter den passerande lasten kan beräknas. Rapporten behandlar även simuleringar av hjulplattor, vågutbredning, kontakttider samt hur en last med varierande frekvens och hastighet påverkar sådana mätningar. / Several different methods to weigh railway trains and to detect wheelflats are in use. One method make use of strain gauges calibrated with a static load. This means that a train with a known axle load slowly passes the gauge that is calibrated. The work presented here aims at studying how dynamic train/track interaction influences the shear stress in the rail. Different FEM-analyses have been performed to study this. On the one hand analyses with a constant force travelling along the rail have been performed and on the other hand a travelling force that consists of a constant part and a harmonic part was used. The shear stress distribution in the rail gives the possibility to calculate the magnitude of the travelling force passing the gauge. The report also deals with detecting wheelflats, that is, detecting when an impact load hits the rail.
288

Probabilistic Characterization of Neuromuscular Disease: Effects of Class Structure and Aggregation Methods

Farkas, Charles January 2010 (has links)
Neuromuscular disorders change the underlying structure and function of motor units within a muscle, and are detected using needle electromyography. Currently, inferences about the presence or absence of disease are made subjectively and are largely impression-based. Quantitative electromyography (QEMG) attempts to improve upon the status quo by providing greater levels of precision, objectivity and reproducibility through numeric analysis, however, their results must be transparently presented and explained to be clinically viable. The probabilistic muscle characterization (PMC) model is ideally suited for a clinical decision support system (CDSS) and has many analogues to the subjective analysis currently used. To improve disease characterization performance globally, a hierarchical classification strategy is developed that accounts for the wide range of MUP feature values present at different levels of involvement (LOI) of a disorder. To improve utility, methods for detecting LOI are considered that balance the accuracy in reporting LOI with its clinical utility. Finally, several aggregation methods that represent commonly used human decision-making strategies are considered and evaluated for their suitability in a CDSS. Four aggregation measures (Average, Bayes, Adjusted Bayes, and WMLO) are evaluated, that offer a compromise between two common decision making paradigms: conservativeness (average) and extremeness (Bayes). Standard classification methods have high specificity at a cost of poor sensitivity at low levels of disease involvement, but tend to improve with disease progression. The hierarchical model is able to provide a better balance between low-LOI sensitivity and specificity by providing the classifier with more concise definitions of abnormality due to LOI. Furthermore, a method for detecting two discrete levels of disease involvement (low and high) is accomplished with reasonable accuracy. The average aggregation method offers a conservative decision that is preferred when the quality of the evidence is poor or not known, while the more extreme aggregators such as Bayes rule perform optimally when the evidence is accurate, but underperform otherwise due to outlier values that are incorrect. The methods developed offer several improvements to PMC, by providing a better balance between sensitivity and specificity, through the definition of a clinically useful and accurate measure of LOI, and by understanding conditions for which each of the aggregation measures is better suited. These developments will enhance the quality of decision support offered by QEMG techniques, thus improving the diagnosis, treatment and management of neuromuscular disorders.
289

A Theoretical Analysis Of Fire Development And Flame Spread In Underground Trains

Musluoglu, Eren 01 August 2009 (has links) (PDF)
The fire development and flame spread in the railway carriages are investigated by performing a set of simulations using a widely accepted simulation software called &amp / #8216 / Fire Dynamics Simulator&amp / #8217 / . Two different rolling stock models / representing a train made up of physically separated carriages, and a 4-car train with open wide gangways / have been built to examine the effects of train geometry on fire development and smoke spread within the trains. The simulations incorporate two different ignition sources / a small size arson fire, and a severe baggage fire incident. The simulations have been performed incorporating variations of parameters including tunnel geometry, ventilation and evacuation strategies, and combustible material properties. The predictions of flame spread within the rolling stock and values of the peak heat release rates are reported for the simulated incident cases. In addition, for a set of base cases the onboard conditions are discussed and compared against the tenability criteria given by the international standards. The predictions of heat release rate and the onboard conditions from the Fire Dynamics Simulator case studies have been checked against the empirical methods such as Duggan&amp / #8217 / s method and other simulation softwares such as CFAST program.
290

Compressed wavefield extrapolation with curvelets

Lin, Tim T. Y., Herrmann, Felix J. January 2007 (has links)
An explicit algorithm for the extrapolation of one-way wavefields is proposed which combines recent developments in information theory and theoretical signal processing with the physics of wave propagation. Because of excessive memory requirements, explicit formulations for wave propagation have proven to be a challenge in {3-D}. By using ideas from ``compressed sensing'', we are able to formulate the (inverse) wavefield extrapolation problem on small subsets of the data volume, thereby reducing the size of the operators. According {to} compressed sensing theory, signals can successfully be recovered from an imcomplete set of measurements when the measurement basis is incoherent} with the representation in which the wavefield is sparse. In this new approach, the eigenfunctions of the Helmholtz operator are recognized as a basis that is incoherent with curvelets that are known to compress seismic wavefields. By casting the wavefield extrapolation problem in this framework, wavefields can successfully be extrapolated in the modal domain via a computationally cheaper operatoion. A proof of principle for the ``compressed sensing'' method is given for wavefield extrapolation in 2-D. The results show that our method is stable and produces identical results compared to the direct application of the full extrapolation operator.

Page generated in 0.0445 seconds