• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear Seismic Responses of High-Speed Railway System considering Train-Bridge Interaction / 列車-橋梁連成系を考慮した高速鉄道システムの地震時非線形応答解析

Lu, Xuzhao 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22418号 / 工博第4679号 / 新制||工||1730(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 KIM Chul-Woo, 教授 清野 純史, 教授 杉浦 邦征 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
2

Train-Bridge Interaction on Freight Railway Lines

Martino, Davide January 2011 (has links)
This study investigates the dynamic response of a railway bridge under train passage. Three load models designed around the Swedish Steel Arrow freight train are tested and compared. A series of Concentrated Forces, a succession of single degree of freedom Sprung-Masses, and a sequence of complex multi-degree of freedom Train Wagons. The increase in accuracy of the representation corresponds to taking into account the inertial properties of the wagons. The track-bed layer is substitute by a sequence of regularly spaced couple of springs and dampers at the sleeper distance. Under the assumption of this work, a portion of the ballast vibrates with the sleeper during train passage. Both bridge and rail are modelled under Bernoulli-Euler beam theory. The dynamic behavior of the bridge is investigated in presence or absence of vertical track irregularities. The main conclusions of the report can be summarized as:   • the dynamic amplification attains its maximum value, for every train model, at the critical train speeds of 120 km/h. Proper resonance has also been detected at the speed of 60 km/h in all the simulations;   • the Concentrated Forces model provided an upper boundary of the acceleration response of the bridge while the Sprung-Mass systems a lower boundary. The response of the two models is in very good agreement at non resonance speeds. The simulation with Train Wagons loading does not fit completely this trend, it adds two peaks on the diagram; Besides that, the bridge response lies between the two limits;   • the presence of track irregularities determines a variation of the bridge dynamics only if combined with Train Wagon load model. The Concentrated Force pattern couldn’t detect the modification of the profile while the Sprung-Masses case provided a diagram of maximum acceleration similar to the one over flat rail simply shifted upwards;   • the position of the track irregularities along the bridge influence its dynamics.
3

Impact Of Passanger Comfort Level On Design Of Short-span Composite Steel I-girder High Speed Railroad Bridges

Senturk, Tolga 01 January 2010 (has links) (PDF)
In globalizing world, increase in demand for high speed rail travel requires comfortable ride over bridges while maintaining an economical design. These bridges either have composite steel I-girders, prestressed precast I or box girder superstructures. The span lengths can reach up to 40 meters. If frequency of wheel load pass at a point on bridge matches with one the critical frequencies of the structure, excessive vibration can developed both at the train and the bridge even if the structure is structurally safe. Excessive vibration can discomfort the passengers. Focus of this study is given to identify certain thresholds for the rigidity of span to minimize the passenger discomfort at short-span composite steel I-girder high speed railroad bridges. In this context, various span lengths with different girder configurations have been analyzed under various train design speeds and ballast stiffness. Eigenvalue analyses are performed to determine critical frequencies of bridges. Moving force models are used to determine structural vibrations as recommended by high speed railroad bridge design specifications. It is well-known that stiffer structures can have significantly less vibration amplitudes than lighter ones providing a comfortable ride for high speed train passes.
4

Train–Bridge Interaction : Literature Review and Parameter Screening

Arvidsson, Therese January 2014 (has links)
New railway lines are continuously being constructed and existing lines are upgraded. Hence, there is a need for research directed towards efficient design of the supporting structures. Increasingly advanced calculation methods can be motivated, especially in projects where huge savings can be obtained from verifying that existing structures can safely support increased axle loads and higher speeds. This thesis treats the dynamic response of bridges under freight and passenger train loads. The main focus is the idealisation of the train load and its implications for the evaluation of the vertical bridge deck acceleration. To ensure the running safety of train traffic at high speeds the European design codes set a limit on the vertical bridge deck acceleration. By considering the train–bridge interaction, that is, to model the train as rigid bodies on suspension units instead of constant moving forces, a reduction in bridge response can be obtained. The amount of reduction in bridge deck acceleration is typically between 5 and 20% for bridges with a span up to 30 m. The reduction can be higher for certain train–bridge systems and can be important also for bridge spans over 30 m. This thesis aims at clarifying for which system parameter combinations the effect of train–bridge interaction is important. To this end, a thorough literature survey has been performed on studies in train–track–bridge dynamics. The governing parameters in 2D train–bridge systems have been further studied through a parameter screening procedure. The two-level factorial methodology was applied to study the effect of parameter variations as well as the joint effect from simultaneous changes in several parameters. The effect of the choice of load model was thus set in relation to the effect of other parameter variations. The results show that resonance can arise from freight train traffic within realistic speed ranges (&lt; 150 km/h). At these resonance peaks, the reduction in bridge response from a train–bridge interaction model can be considerable. From the screening of key parameters it can furthermore be concluded that the amount of reduction obtained with a train–bridge interaction model depends on several system parameters, both for freight and passenger train loads. In line with the European design code’s guidelines for dynamic assessment of bridges under passenger trains an additional amount of damping can be introduced as a simplified way of taking into account the reduction from train–bridge interaction. The amount of additional damping is today given as function of solely the bridge span length, which is a rough simplification. The work presented in this thesis supports the need for a refined definition of the additional damping. / Nya järnvägslinjer byggs kontinuerligt och befintliga linjer uppgraderas. Det finns därför ett behov av forskning inriktad på effektiv design av de bärande konstruktionerna. Alltmer avancerade beräkningsmetoder kan vara motiverade, särskilt i projekt där stora besparingar kan erhållas från att verifiera att befintliga konstruktioner kan bära ökade axellaster och högre hastigheter. Föreliggande avhandling behandlar broars dynamiska respons under belastning av gods- och passagerartåg. Huvudfokus är att studera modelleringsalternativ för tåglasten och vilka konsekvenser de har för utvärderingen av brobanans vertikala acceleration. För att garantera trafiksäkerhet vid höga tåghastigheter definierar de europeiska normerna en maximalt tillåten vertikal acceleration i brobanan. Genom att beakta tåg-bro-interaktion, där tågkomponenterna modelleras som avfjädrade stela kroppar istället för konstanta punktlaster, kan en minskning av brons respons erhållas. Reduktionen av brobanans acceleration är typiskt mellan 5 och 20% för broar med en spännvidd på upp till 30 m. Minskningen kan vara högre för vissa tåg-brosystem och kan vara viktigt också för spännvidder över 30 m. Denna avhandling syftar till att klargöra för vilka kombinationer av tåg-broparametrar effekten av tåg-bro-interaktion är viktig. I detta syfte har en omfattande litteraturstudie genomförts inom området tåg-spår-brodynamik. De styrande parametrarna i 2D tåg-brosystem har studerats vidare i en parameterstudie. Två-nivå faktorförsök har tillämpats för att studera effekten av parametervariationer samt den ytterligare effekten av samtidiga förändringar i flera parametrar. Effekten av valet av lastmodell sattes därmed i relation till effekten av andra parametervariationer. Resultaten visar att resonans kan uppstå från godstrafik inom ett realistiskt hastighetsintervall (&lt; 150 km/h). Vid dessa resonanstoppar kan en betydande minskning av broresponsen erhållas med en tåg-bro-interaktionsmodell. Från studien av nyckelparametrar kan man vidare dra slutsatsen att reduktionen som erhålls med en tåg-bro-interaktionsmodell beror på flera systemparametrar, både för gods- och passargerartåg. Enligt de europeiska normernas rekommendationer för dynamisk kontroll av broar för passagerartrafik kan en ökad brodämpning introduceras som ett förenklat sätt att ta hänsyn till minskningen från tåg-bro-interaktion. Mängden tilläggsdämpning anges idag som en funktion av enbart brons spännvidd, vilket är en grov förenkling. Det arbete som presenteras i denna avhandling visar på behovet av en förbättrad definition av tilläggsdämpningen. / <p>QC 20140429</p>

Page generated in 0.1399 seconds