Spelling suggestions: "subject:"intracranial magnetic stimulation""
151 |
To select one hand while using both : neural mechanisms supporting flexible hand dominance in bimanual object manipulationTheorin, Anna January 2009 (has links)
In daily activities, the brain regularly assigns different roles to the hands dependingon task and context. Yet, little is known about the underlying neural processes. Thiscertainly applies to how the brain, where each hemisphere primarily controls onehand, manages the between-hand coordination required in bimanual objectmanipulation. By using behavioral, neurophysiological and functional magneticresonance imaging techniques, the present thesis examines neural mechanisms thatsupport hand coordination during tasks where the two hands apply spatiotemporallycoupled but opposing forces for goal attainment, e.g., as when removing the cap froma bottle. Although the two hands seem to operate symmetrically in such tasks, Study Ishowed that one hand primarily acts while the other assists. Moreover, this roledifferentiation was found to be flexible with the brain appointing either hand asprime actor depending on the spatial congruency between hand forces and desiredmovement consequences. Accordingly, when we remove a cap from a bottle, the handthat grasps the cap, be it left or right depending on overall task constraints, isappointed as prime actor because the twist forces it generates are aligned with thegoal to remove the cap, while the other hand, holding the bottle, applies stabilizingforces in the opposite direction. Changes in hand assignments are caused by amidline shift of lateralized activity throughout the motor system, from distal handmuscles to corticospinal pathways and primary sensorimotor and cerebellar corticalareas (Study I). Although the bimanual actions examined involved both within- andbetween-hand coordination, Study II failed to reveal additional brain activity duringbimanual as compared to matching unimanual actions, except for the primarysensorimotor areas where subpopulations of neurons were preferentially engagedduring either bimanual or unimanual actions. Thus, dedicated neurons in the motorcortices might support critical bimanual coordinative operations. While imagingresults indicated that a mainly left-lateralized parietal-premotor network managedthe task irrespective of prime actor, premotor areas presumably established handassignment by allocating the lead either to the left or the right primary sensorimotorareas (Study I and II). Regarding the process of prime actor selection and hence thecontrol of these premotor networks, imaging results indicate a transitory involvementof prefrontal cortical areas (Study III). The detected areas belong to a networkconsidered critical for cognitive operations such as judgment and decision-making,and for evaluation of utility of actions, including conflict detection. The implicitselection of prime actor during bimanual tasks thus seems to be supported by corticalareas traditionally associated primarily with complex cognitive challenges.
|
152 |
Sensory information to motor cortices: Effects of motor execution in the upper-limb contralateral to sensory input.Legon, Wynn 22 September 2009 (has links)
Performance of efficient and precise motor output requires proper planning of movement parameters as well as integration of sensory feedback. Peripheral sensory information is projected not only to parietal somatosensory areas but also to cortical motor areas, particularly the supplementary motor area (SMA). These afferent sensory pathways to the frontal cortices are likely involved in the integration of sensory information for assistance in motor program planning and execution. It is not well understood how and where sensory information from the limb contralateral to motor output is modulated, but the SMA is a potential cortical source as it is active both before and during motor output and is particularly involved in movements that require coordination and bilateral upper-limb selection and use. A promising physiological index of sensory inflow to the SMA is the frontal N30 component of the median nerve (MN) somatosensory-evoked potential (SEP), which is generated in the SMA. The SMA has strong connections with ipsilateral areas 2, 5 and secondary somatosensory cortex (S2) as well as ipsilateral primary motor cortex (M1). As such, the SMA proves a fruitful candidate to assess how sensory information is modulated across the upper-limbs during the various stages of motor output. This thesis inquires into how somatosensory information is modulated in both the SMA and primary somatosensory cortical areas (S1) during the planning and execution of a motor output contralateral to sensory input across the upper-limbs, and further, how and what effect ipsilateral primary motor cortex (iM1) has upon modulation of sensory inputs to the SMA.
|
153 |
Sensory information to motor cortices: Effects of motor execution in the upper-limb contralateral to sensory input.Legon, Wynn 22 September 2009 (has links)
Performance of efficient and precise motor output requires proper planning of movement parameters as well as integration of sensory feedback. Peripheral sensory information is projected not only to parietal somatosensory areas but also to cortical motor areas, particularly the supplementary motor area (SMA). These afferent sensory pathways to the frontal cortices are likely involved in the integration of sensory information for assistance in motor program planning and execution. It is not well understood how and where sensory information from the limb contralateral to motor output is modulated, but the SMA is a potential cortical source as it is active both before and during motor output and is particularly involved in movements that require coordination and bilateral upper-limb selection and use. A promising physiological index of sensory inflow to the SMA is the frontal N30 component of the median nerve (MN) somatosensory-evoked potential (SEP), which is generated in the SMA. The SMA has strong connections with ipsilateral areas 2, 5 and secondary somatosensory cortex (S2) as well as ipsilateral primary motor cortex (M1). As such, the SMA proves a fruitful candidate to assess how sensory information is modulated across the upper-limbs during the various stages of motor output. This thesis inquires into how somatosensory information is modulated in both the SMA and primary somatosensory cortical areas (S1) during the planning and execution of a motor output contralateral to sensory input across the upper-limbs, and further, how and what effect ipsilateral primary motor cortex (iM1) has upon modulation of sensory inputs to the SMA.
|
154 |
Inducing neuroplasticity in the human motor system by transcranial magnetic stimulation: from pathophysiology to a therapeutic option in movement disorders / Durch transkranielle Magnetstimulation induzierte Neuroplastizität im motorischen System des Menschen: von der Pathophysiologie zu einer Therapieoption bei BewegungsstörungenRothkegel, Holger 16 February 2010 (has links)
No description available.
|
155 |
Excitabilité du système miroir : une étude de stimulation magnétique transcrânienne sur le chant et le langageRoyal, Isabelle 09 1900 (has links)
La perception de mouvements est associée à une augmentation de l’excitabilité du cortex moteur humain. Ce système appelé « miroir » sous-tendrait notre habileté à comprendre les gestes posés par une tierce personne puisqu’il est impliqué dans la reconnaissance, la compréhension et l’imitation de ces gestes. Dans cette étude, nous examinons de quelle façon ce système miroir s’implique et se latéralise dans la perception du chant et de la parole. Une stimulation magnétique transcrânienne (TMS) à impulsion unique a été appliquée sur la représentation de la bouche du cortex moteur de 11 participants. La réponse motrice engendrée a été mesurée sous la forme de potentiels évoqués moteurs (PÉMs), enregistrés à partir du muscle de la bouche. Ceux-ci ont été comparés lors de la perception de chant et de parole, dans chaque hémisphère cérébral. Afin d’examiner l’activation de ce système moteur dans le temps, les impulsions de la TMS ont été envoyées aléatoirement à l’intérieur de 7 fenêtres temporelles (500-3500 ms). Les
stimuli pour la tâche de perception du chant correspondaient à des vidéos de 4 secondes
dans lesquelles une chanteuse produisait un intervalle ascendant de deux notes que les
participants devaient juger comme correspondant ou non à un intervalle écrit. Pour la tâche de perception de la parole, les participants regardaient des vidéos de 4 secondes montrant une personne expliquant un proverbe et devaient juger si cette explication correspondait bien à un proverbe écrit. Les résultats de cette étude montrent que les amplitudes des PÉMs recueillis dans la tâche de perception de chant étaient plus grandes après stimulation de l’hémisphère droit que de l’hémisphère gauche, surtout lorsque l’impulsion était envoyée entre 1000 et 1500 ms. Aucun effet significatif n’est ressorti de la condition de perception de la parole. Ces résultats suggèrent que le système miroir de l’hémisphère droit s’active
davantage après une présentation motrice audio-visuelle, en comparaison de l’hémisphère gauche. / The perception of movements is associated with increased activity in the human motor cortex. This system underlies our ability to understand one’s actions, as it is implicated in the recognition, understanding and imitation of actions. In this study, we investigated the involvement and lateralization of this “mirror neuron” system (MNS) in the perception of singing and speech. Transcranial magnetic stimulation (TMS) was applied over the mouth representation of the motor cortex in 11 participants. The generated motor response was measured in the form of motor evoked potentials (MEPs), recorded from the mouth muscle. The MEPs were compared for the singing and speech conditions in each cerebral hemisphere. Furthermore, to investigate the time course of the MNS activation, TMS pulses were randomly emitted in 7 time windows (ranging from 500 to 3500 milliseconds after stimulus onset). The stimuli for the singing condition consisted in 4-second videos of singers producing a 2-note ascending interval. Participants had to judge whether the sung interval matched a written interval, previously presented on the screen. For the speech condition, 4-second videos of a person explaining a proverb were shown. Participants had to decide whether this explanation matched a written proverb previously displayed on the screen. Results show that the MEP amplitudes were higher after stimulation of the right hemisphere in the singing condition. More specifically, sending TMS pulses between 1000 and 1500 milliseconds over the right hemisphere yielded higher MEPs as compared to the left hemisphere. No effect was found in the speech condition. These results suggest that the right MNS is more activated after an audiovisual motor presentation compared to the left hemisphere.
|
156 |
Associative plasticity and afferent regulation of corticospinal excitability in uninjured individuals and after incomplete spinal cord injuryRoy, Francois D. Unknown Date
No description available.
|
157 |
Corticospinal mechanisms for muscle activation in resistance-trained and non-trained males : A cross-sectional studyKullander, Christoffer January 2015 (has links)
Aim The purpose of this study was to compare resistance-trained (RT) and non-trained (NT) males regarding mechanisms for neural activation during isometric muscle contractions of the soleus muscle. Further the plantar flexor strength of the two groups were compared. Method Ten males that had been resistance training for at least 3 years (RT) and 10 who did not train regularly (NT) participated in the study. The participants performed isometric contractions of their right plantar flexors against an isokinetic dynamometer at 15, 25, 50, 80 and 100% of maximal voluntary contraction. Five contractions were performed for each level in two different conditions; one where the participants were stimulated using transcranial magnetic stimulation over the left motor cortex and one in which they were stimulated electrically over the tibial nerve. Stimulations were also delivered at rest. The resulting soleus muscle motor evoked potentials (MEPs) and V-waves were normalized to a maximal M-wave (Mmax). Plantar flexor strength was measured and voluntary activation estimated using the twitch interpolation technique. Results No significant difference was found between the RT and the NT group for voluntary activation, V/Mmax ratio or MEP/Mmax at any level of maximal voluntary contraction (MVC). The RT group was significantly stronger than the NT group. Conclusions The study showed that the RT group was stronger than the NT group. Despite the difference in strength there was no significant group difference between the two groups in MEPs, V/Mmax or voluntary activation. This indicates that there is no, or a very small difference in corticospinal excitability of the soleus muscle between the chronic RT males and the NT males.
|
158 |
The use of transcranial magnetic stimulation in locomotor function : methodological issues and application to extreme exerciseTemesi, John 28 October 2013 (has links) (PDF)
Transcranial magnetic stimulation (TMS) is a widely-used investigative technique in motor cortical evaluation. TMS is now being used in the investigation of fatigue to help partition the effects of central fatigue. Few studies have utilized this technique to evaluate the effects of locomotor exercise and none in conditions of extreme exercise. Therefore, the purpose of this thesis was twofold; first, to answer methodological questions pertaining to the use of TMS in fatigue evaluation, particularly of the quadriceps, and second, to investigate the effects of extreme exercise conditions on the development of central and supraspinal fatigue and corticospinal excitability and inhibition. In Studies 1 and 2, the effect of approaching a target force in different ways before the delivery a TMS pulse and the difference between commonly-employed methods of determining TMS intensity on the selection of optimal TMS intensity were investigated. In Study 3, the effect of one night sleep deprivation on cognitive and exercise performance and central parameters was investigated. The effect of a 110-km ultra-trail on the supraspinal component of central fatigue was evaluated in Study 4. The principal findings from this thesis are that during TMS evaluation during brief voluntary contractions, it is essential to deliver the TMS pulse once the force has stabilized at the target and that a stimulus-response curve at 20% MVC is appropriate for determining optimal TMS intensity in exercise and fatigue studies. Furthermore, while sleep deprivation negatively-impacted cognitive and exercise performance, it did not influence neuromuscular parameters nor result in greater central fatigue. Supraspinal fatigue develops and corticospinal excitability increases during endurance/ultra-endurance running and cycling, while the effects on inhibitory corticospinal mechanisms are equivocal and probably depend on exercise characteristics and TMS intensity
|
159 |
Hebbian Neuroplasticity in the Human Corticospinal Tract as Induced by Specific Electrical and Magnetic Stimulation ProtocolsMcGie, Steven 13 August 2014 (has links)
Conventional functional electrical stimulation (FES) therapy, if provided shortly after an
incomplete spinal cord injury, is able to help an individual to restore voluntary hand
function. This is thought to occur through the induction of neuroplasticity. However,
conventional FES therapy employs a push-button-based control scheme, which does not
fully require the recipient to generate volitional movements. The first study in this thesis
therefore sought to determine, in an early proof-of-concept test with able-bodied
participants, whether control strategies which are triggered by volitional activity
(including an electroencephalography-based brain-machine interface (BMI-FES) and an
electromyogram-based control scheme (EMG-FES)) might provide greater benefits to
hand function. The results offer relatively weak evidence to suggest that BMI-FES, and
especially EMG-FES, were able to induce greater neuroplasticity than conventional
treatments in the corticospinal tract leading to the hands, but that this did not
immediately translate to more functional improvements such as maximum grip force.
ii
The second study in this thesis focussed on spinal associative stimulation (SAS), which
involves paired stimulation pulses at both the head (via transcranial magnetic
stimulation), and the wrist (via peripheral nerve stimulation). The purpose of this, as with
the first study, was to induce neuroplasticity and upregulate the corticospinal tract
leading to the hands. While limited research has suggested that it is possible to produce
neuroplasticity through SAS, all such studies have provided stimulation at a fixed
frequency of 0.1 or 0.2 Hz. The present study therefore sought to compare the
effectiveness of a typical 0.1 Hz paradigm with a 1 Hz paradigm, and a paradigm which
provided stimulation in 5 Hz “bursts”. None of the paradigms were able to successfully
induce neuroplasticity in a consistent manner. The increased variability in this study as
compared to the previous one, despite the nearly identical assessment methodology,
suggests that responses to the SAS treatment may have been highly individual. This
serves to highlight a potential limitation of the treatment, which is that its effectiveness
may not be universal, but rather dependent on each specific recipient. This may be a
challenge faced by SAS should it continue to be tested as a novel therapy.
|
160 |
The cortical response to fatiguing exercise : studies of intracortical inhibition, interventional brain stimulation and cerebral haemodynamicsBenwell, Nicola Mae January 2007 (has links)
[Truncated abstract] A reduction in the force-generating capacity of a muscle is the primary indicator of fatigue and the majority of this force loss is the result of peripheral fatigue. However, there is also evidence that the central nervous system (CNS) does not drive muscles maximally during fatiguing exercise, which has led to the concept of central fatigue. The strongest evidence for this comes from interpolated twitch studies showing that transcranial magnetic stimulation (TMS) during a maximal voluntary contraction can produce an increment in force which becomes greater as fatigue develops. In addition, the silent period (SP) duration increases during a fatiguing exercise, suggesting that there is a buildup of intracortical inhibition that might limit central motor drive. In contrast, motor evoked potential (MEP) amplitude increases during fatigue suggesting an increase in corticomotor excitability during exercise . . . The primary finding was a progressive increase in the fMRI signal during exercise, with a reduction following exercise, and signal changes were observed in all regions. These studies provide evidence that central adaptive processes occur during muscle fatigue and highlight the potential to facilitate these processes with interventional paradigms. The findings indicate the extent of cortical changes during fatigue and suggest that there may also be neurohaemodynamic and/or metabolic components to central adaptive processes. Understanding the central response to muscle fatigue should incorporate mechanisms both of central adaptation and central fatigue.
|
Page generated in 0.1737 seconds