241 |
Analysis of the RB pathway in growth and cell cycle control /Weng, Li. January 2002 (has links)
Thesis (Ph. D.)--University of Chicago, Committee on Cancer Biology, December 2002. / Includes bibliographical references. Also available on the Internet.
|
242 |
The structure of the chromatin axis during transcriptionEricsson, Christer. January 1988 (has links)
Thesis (doctoral)--Karolinska Institutet, Stockholm, 1988. / Extra t.p. with thesis statement inserted. Includes bibliographical references.
|
243 |
Les facteurs de transcription impliqués dans la régulation de l'expression du gène du retard mental lié à l'X fragile-1 et du gène du récepteur B1 des bradykininesAngers, Martin. January 1900 (has links) (PDF)
Thèse (Ph.D.)--Université Laval, 2004. / Titre de l'écran-titre (visionné le 29 novembre 2004). Bibliogr.
|
244 |
Nucleosomes, transcription and transcription regulation in ArchaeaXie, Yunwei, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xiv, 200 p.; also includes graphics (some col.). Includes bibliographical references (p. 167-197). Available online via OhioLINK's ETD Center
|
245 |
The induction of apoptosis by the E2F1 transcription factor and the emergence of a role for E2F1 in the DNA double strand break responsePowers, John Thomas, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
|
246 |
Mss11p mediated regulation of transcription, pseudohyphal differentiation and flocculation in Saccharomyces cerevisiaeFranken, Jaco (Cornelius Jacobus) 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: In all cellular systems the ability to alter eellular programs in response to
extracellular cues is essential for survival. This involves the integration of
signals triggered by membrane bound receptors in order to adjust the
expression of target genes and enzyme activities and consequently
phenotypic outcome. The yeast Saccharomyces cerevisiae has evolved
several adaptations, such as, sporulation and pseudohyphal differentiation, in
order to survive changes in the surrounding environment. Pseudohyphal
differentiation and the related phenotype, invasive growth, are proposed to be
adaptations that enable the yeast to forage for scarce nutrients or escape
from a detrimental environment. This dimorphic transition is associated with a
change from the normal "yeast" form to a pseudohyphal form, which involves
changes in budding pattern, cell-cycle progression, cellular elongation, and
cell-eell and cell-substrate adherence. The outcome of these changes is
elongated eells, which bud in a unipolar fashion and do not separate after
budding to form chains of cells referred to as pseudohyphae. These
pseudohyphae are able to penetrate the surface of agar containing growth
medium, a process referred to as invasive growth.
Nutrient-induced adaptations, such as pseudohyphal growth, have been
extensively studied in S. cere visiae , and several factors have been implicated
in the regulation thereof, many of which are part of specific signalling
pathways. The most clearly defined are the filamentous growth specific MAP
kinase cascade and the Gpa2p-cAMP-PKA pathway. MUC1/FL011,
encoding a member of a family of cell wall associated proteins involved in cellcell/
cell-substrate adhesion, is regulated by these pathways and considered to
be critical in the establishment of pseudohyphal differentiation and invasive
growth. The promoter region of MUC1/FL011 represents one of the largest
yeast promoters identified to date, with cis-acting elements present up to 2.4
kb upstream from the first coding triplet. The upstream regulatory region of
MUC1/FL011 is almost identical to that of the STA2 gene, which encodes an
extracellular glucoamylase required for the utilisation of extracellular starch. As suggested by the extent of homology between these two promoters,
MUC1/FL011 and STA2 are co-regulated to a large degree and both require
the same transcription factors.
Mss11p plays a central role in the regulation of MUC1/FL011 and STA2 and
consequently starch metabolism and pseudohyphaI differentiation. The
regulation conferred by MSS11 on the transcriptional levels of MUC1/FL011
and STA2 also appears to be dependent on signals generated specifically in
the presence of low nitrogen and glucose. Mss11p does not have significant
homology to any other yeast protein, with the exception of limited homology to
the transcriptional activator F108p. However, several distinctive domains have
been identified in the MSS11 gene product. Firstly, Mss11p contains polyglutamine
and poly-asparagine domains. It also contains a putative ATP- or
GTP-binding domain (P-Ioop), commonly found in proteins such as kinases,
ATPases or GTPases. Two short stretches close to the N-terminal, labelled
H1 and H2, share significant homology to the transcriptional activator, F108p.
Both the H2 domain and the extreme C-terminal of Mss11p are able to
stimulate RNA polymerase II dependent transcription. Furthermore, the H1
domain together with the P-Ioop negatively regulates the activation potential
of the H2 domain.
This study presents further insight into the functioning of Mss11p and the
involvement of the separate activation and regulatory domains in mediating
transcriptional activation and pseudohyphal differentiation in response to
nutrient limitation. Genetic interactions between Mss11p and other factors
involved in the regulation of pseudohyphal growth and starch degradation
were revealed, and specific regions of Mss11p were shown to be required by
these factors in order to achieve their required function. In addition, results
obtained in this study implicates Mss11p in the regulation of Ca2+-dependent
flocculation and suggest that the FL01 gene is also regulated by Mss11p in
this capacity. / AFRIKAANSE OPSOMMING: Die vermoë om sellulêre programme in reaksie op ekstrasellulêre seine te
verander, is 'n essensiële vereiste vir alle sellulêre sisteme. Dit behels die
integrasie van seine gegenereer deur membraan-gebonde reseptore om
ekspressie van teikengene en ensiemaktiwiteite sodanig aan te pas dat
gewenste fenotipise uitkomste bewerkstellig kan word. Die gis
Saccharomyces cerevisiae het verskeie aanpassingsmeganismes ontwikkel,
soos byvoorbeeld sporulasie en pseudohifeforming, om veranderinge in die
omgewing te kan oorleef. Pseudohifevorming en die verwante fenotipe,
penetrasiegroei, word beskou as aanpassings te wees wat die gis in staat stel
om van 'n skadelike omgewing weg te kom, of dit in staat te stelom by skaars
voedingstowwe uit te kom. Hierdie dimorfiese transisie word geassosieer met
'n verandering van die normale "gisvorm" tot pseudohifevorming wat
veranderinge in die botpatroon, selsiklusprogressie, selverlenging, sel-sel en
sel-substraat aanhegting behels. Die uitkoms van hierdie verandering is
verlengde selle, wat unipolêr bot en nie van mekaar skei nie om sodoende
kettings van selle te vorm en waarna verwys word as pseudohifes. Hierdie
pseudohifes is ook in staat om die oppervlak van 'n agar bevattende
groeimedium te penetreer, 'n proses waarna verwys word as penetrasiegroei.
Aanpassings soos pseudohitevorminq is die afgelope dekade intensief
nagevors, en verskeie faktore en seintransduksienetwerke is in die regulering
daarvan geïmpliseer. Onder hierdie seintransduksienetwerke is die bes
gedefiniëerde paaie die filamentasie-spesifieke MAP-kinasekaskade en die
Gpa2p-cAMP-PKA pad. MUC1/FL011 kodeer vir 'n lid van 'n geenfamilie wat
met sel-sel/sel-substraat aanhegting geasosieer word en dit word deur hierdie
seintransduksie netwerke gereguleer. MUC1/FL011 word as essensieel vir
pseudohife vorming beskou. MUC1/FL011 word gereguleer deur die grootste
gispromoter wat tot op hede geïdentifiseer is, met cis-werkende elemente so
ver as 2.4 kb stroom-op van ATG. Die MUC1/FL011 promoter is feitlik
identies tot die van die STA2-geen, wat kodeer vir 'n ekstrasellulêre
glukoamilase wat die gis in staat stelom ekstrasellulêre stysel te benut. Weens die homologie tussen die twee promoters, word MUC1/FL011 en
STA2 tot In groot mate ge-koreguleer en beide benodig dieselfde
transkripsiefaktore.
Mss11p speel In sentrale rol in die regulering van MUC1/FL011 en STA2 en
dus ook in die regulering van pseudohifevorming en styselmetabolisme. Die
regulering wat deur Mss11p of MUC1/FL011 en STA2 uitgeofen word, blyk
verder onderhewig te wees aan seine wat gegenereer word spesifiek in die
teenwoordigheid van lae konsentrasies glukose en stikstof. Mss11p het nie
betekenisvolle homologie met enige ander gisproteïen nie, behalwe vir
beperkte homologie met die tranksripsionele aktiveerder F108p. Verskeie
onderskeidbare domeine is egter in die MSS11 geenproduk teenwoordig.
Eerstens, Mss11p bevat kenmerkende poliglutamien en poli-asparagien
domeine. Verder bevat Mss11p ook In voorspelde ATP- of GTP-bindings
domein (P-Ius), wat algemeen in proteïene soos kinases, ATPasaes en
GTPases voorkom. Twee kort areas naby die N-terminaal, aangedui as H1
en H2, het betekenisvolle homologie met die transkripsiefaktor F108p. Beide
die H2 domein en die ektreme C-terminaal van Mss11p is in staat om RNA
polimerase " afhanklike transkripsie te stimuleer. Verder het die H1-domein
in samewerking met die P-Ius In negatiewe uitwerking op die
aktiveringspotensiaal van die H2-domein.
Hierdie studie bied verdere insig tot die werking van Mss11p en die
betrokkenheid van die verskeie aktiverings- en reguleringsdomeine by die
oemiddetlinq van transkripsionele aktivering en pseudohifevorming in reaksie
op beperking van voedingstowwe. Genetiese interaksies tussen Mss11p en
ander faktore betrokke met die regulering van pseudohifevorming en
styselafbraak is in hierdie studie aangetoon. Voorts is daar ook gewys dat
spesifieke areas van Mss11p benodig word deur hierdie faktore om hulle
biologiese funksie uit te oefen. Daar is ook In rol vir Mss11p in die regulering
van Ca2+-afhanklike flokkulasie aangetoon en daar is bewys dat die FL01
geen deur Mss11p benodig word om hierdie effek uit te oefen.
|
247 |
Analyse de la composition et de la fonction de la machinerie basale de transcription au cours du développement et de la différenciation / Analysis of the composition and the function of the basal transcription machinery during development and differentiationBardot, Paul Louis Bernard 28 June 2018 (has links)
TFIID et SAGA sont deux complexes importants pour la transcription, contenant la sous-unité TAF10. Nous avons analysé leur composition dans l’embryon murin et différents contextes cellulaires par immuno-précipitation et spectrométrie de masse. Les sous unités des complexes TFIID et SAGA ont été détectées en proportion différente selon le type cellulaire. Par filtration sur gel, des sous-complexes de TFIID ont aussi été détectés. En absence de TAF10, l’assemblage de TFIID et SAGA est fortement affecté mais la formation des somites n’est pas initialement affecté ni l’expression globale des gènes. L’analyse des niveaux d’ARN totaux et naissants dans les cellules ES murines suggèrent que TFIID et SAGA sont requis globalement pour l’initiation de la transcription, mais que la diminution de la synthèse des ARNm est compensée. / TFIID and SAGA are two multi-subunit complexes which play important roles in transcription and that contain the TAF10 subunit. By immunoprecipitation followed by mass spectrometry, we analyzed the composition of TFIID and SAGA complexes in the embryo as well as in different cellular contexts. TFIID and SAGA complexes subunits were detected in different proportions depending on the cellular context. By gel filtration, we also detected distinct TFIID sub-complexes. In the absence of TAF10, TFIID and SAGA assembly is severely impaired but neither early somitogenesis nor global gene expression is affected. Steady-state and newly transcribed mRNA analyses in mES cells suggest that TFIID and SAGA are generally required for transcription initiation. However, the decrease of mRNA synthesis is compensated.
|
248 |
Characterising the determinants of hypoxia inducible transcription factors binding to chromatinSmythies, James January 2017 (has links)
Hypoxia regulates many hundreds of genes that play important roles in numerous physiological and pathophysiological processes. The hypoxia inducible transcription factors (HIFs) are central to the transcriptional activation of these hypoxia-regulated genes. However, to date, little is known about the determinants of HIF-1 and HIF-2 binding site selection. Both HIF-1 and HIF-2 appear to bind as HIF-α/HIF-1β heterodimers, and recognise the same core consensus DNA motif, the hypoxia response element (HRE). However, each has its own distinct but partially overlapping set of binding sites that accounts for only a subset of the total accessible HRE motifs. Here, I have utilised ChIP-seq to systematically compare pan-genomic HIF-1α, HIF-2α and HIF-1β DNA binding in multiple cell lines and have related this to RNA-seq analyses and other publically-accessible next-generation sequencing datasets. I show that endogenous HIF-Iα subunits exhibit a high-degree of binding site concordance with HIF-1β, consistent with largely canonical binding of intact heterodimers. Despite cell-type specific differences in HIF-1 and HIF-2 binding site occupancy, each isoform exhibits a remarkable rigidity in its preference to bind either promoter-proximal or promoter-distal sites, respectively. These specific distribution patterns are unaffected by the absence of the other HIF-Iα subunit, suggesting that they do not result from exclusion of one isoform by competition with the other, but rather are discrete properties of each. Furthermore, hypoxia regulated genes neighbouring sites that are shared by both HIF-1 and HIF-2 are more likely to be regulated by HIF-1 when the site is closer to the gene and by HIF-2 when further away, indicating that post-binding mechanisms of transcriptional regulation also follow a similar pattern. Comparison of sites preferentially bound by HIF-1 and HIF-2, respectively, revealed associations with distinct histone environments, distinct accessory transcription factor binding motifs and distinct patterns of transcription factor binding site occupancy, suggesting that each may be influencing specific HIF-1 and HIF-2 binding site selection. In particular, both the AP-1 motif and AP-1 binding site occupancy were enriched within HIF-2 binding sites compared to HIF-1 sites. Intervention on AP-1 DNA-binding using the dominant-negative protein, AFos, attenuated HIF binding, specifically at sites co-occupied by AP-1 and HIF. This indicates that a cooperative relationship exists between the two transcription factors. However, binding of both HIF-1α and HIF-2α were affected suggesting that while AP-1 binding may account for the ability of HIF to bind some HRE motifs but not others, it is not a determinant of differential binding between the two isoforms. Overall, this work reveals remarkably distinct and functionally relevant patterns of HIF-1 and HIF-2 binding across the genome, and provides insight into underlying mechanisms of binding.
|
249 |
Investigation of transcriptional regulation of Foxn1 in fetal thymic epithelial progenitor cellsVaidya, Harsh Jayeshkumar January 2016 (has links)
The thymus in mice and humans originates from the third pharyngeal pouch endoderm. This process is divided into early Foxn1-independent stages and later Foxn1-dependent stages. Foxn1 is indispensible for the differentiation of thymic epithelial progenitor cells (TEPCs) as the development of thymus in Foxn1 mutant mice is arrested around E12.5. The transcriptional changes associated with the developmental of the thymus are poorly understood. In particular, the transcriptional regulation of Foxn1 in the developing thymic rudiment has not been definitively identified. Recently, Pax1, Pax9, Tbx1, and E2Fs have been implicated in transcriptional regulation of Foxn1. However, with the exception of E2Fs, evidence regarding their direct involvement in regulating Foxn1 expression is missing. Therefore, the aims of this thesis were to study the transcriptional regulation of Foxn1 through identification of its regulatory regions and studying the transcriptional changes associated with the developing thymus. These aims were addressed through the use of chromatin-immunoprecipitation technique combined with next-generation sequencing and gene expression analyses of the developing TEPCs. The data presented in this thesis identified H3K4me3 and H3K27ac marked Foxn1 promoter and five H3K4me1 and H3K27ac marked putative enhancer regions. The combination of gene expression analyses and transcription factor binding sites within the above regions suggested Ets1, Isl1, Foxc1, Nfia, Nfib, Srf, Foxo1, Nfatc2, Ing4, Foxa2, Hes1, E2Fs, and p53 as candidate transcriptional regulators of Foxn1. Nfatc2 appears also to be a target of Foxn1 that could play an important role in thymus development by regulating a large set of genes. Comparison of wild type and Foxn1 null thymus showed that Foxn1 could act as positive regulator of Pax1 and negative regulator of Gata3 and Eya1, genes important for third pharyngeal pouch development. The comparison of transcriptome of E10.5 and E11.5 third pharyngeal pouch cells and E12.5 TEPCs showed that genes involved in tissue development are downregulated while those involved in antigen presentation, a process important for thymus function, are upregulated during development. These results also demonstrated a decrease in the activity of transcription factor network involving Hox genes and an increase in the activity of a network involving Nfkb, Rela, and Irf genes. Analysis of signalling pathways suggested that the NFκB signalling pathway could be important for thymus development after E12.5 while TGFβ signalling pathway appeared to be detrimental to Foxn1 expression in thymic epithelial cells. Together, I identified several transcription factors that could be involved in transcriptional regulation of Foxn1 in TEPCs, several genes that could be a target of FOXN1, changes in transcription factor network and signalling pathways associated with the developing thymic rudiment.
|
250 |
Piwi function and piRNA cluster regulation : Drosophila melanogaster / Fonction de Piwi et régulation de clusters piRNAs : Drosophila melanogasterLe Thomas, Adrien 11 September 2014 (has links)
Les piRNAs sont une population de petit ARNs très diverse, que l'on retrouve dqns la lignée germinales des animaux pour réprimer les éléments génétiques mobiles : agissant de pair avec les protéines Piwi, ils guident le clivage des transposons actif. Chez la Drosophile, 3 protéines Piwi sont présentes, dont deux d'entre elles, AUB et AGO3, sont cytoplasmique et la dernière, PIWI, est nucléaire cependant son mécanisme d'action reste inconnu. La source principale de piRNAs sont des régions du génome bien particulière, appelé cluster de piRNAs. Cependant, il n'est pas encore connu a ce jour qu'est ce qui différentie ces région du reste du génome. Durant mon doctorant mon travail s'est focalisé sur ces deux questions centrales :Quel est le rôle de PIWI dans le noyau? Nous avons montré que PIWI était responsable de répression transcriptionnelle des transposons par l'intermédiaire de la déposition de marques chromatiniennes répressive, H3K9me3, grâce à la spécificité des piRNAs.Comment sont définit les régions générant des piRNA et comment sont régules leur expression ?Nous avons trouvé que les piRNAs qui sont transmis par la mère aux progénitures sont responsables de l'identification des régions génomiques donnant naissances à de nouveau piRNAs, grâce à la déposition de H3K9me3 dans le noyau et par l'initiation du cycle ping-pong dans le cytoplasme.Nous avons aussi mis en évidence les régions promoteurs des clusters de piRNAs, et trouve qu'elles sont nécessaires pour la production de piRNAs. / PiRNAs are a diverse population of small RNA found in the animal germline to silence mobile genetic elements: loaded into Piwi proteins, they guide homology-dependent cleavage of active transposon mRNAs. In Drosophila, three Piwi proteins are expressed, from which two, AUB and AGO3, are known to destroy transposon transcripts in the cytoplasm. The third one, Piwi itself, is nuclear and the molecular mechanism of its function remains unknown. The main sources of piRNAs are discrete genomic loci called piRNA clusters, however it is not known what differentiate them from non-piRNA producing loci. During my PhD, I focused my work on two central questions:1) What is the role of Piwi in the nucleus? We showed that Piwi is responsible for transcriptional silencing by mediating installment of repressive marks, especially H3K9me3, over active transposons copies in a piRNA dependent manner.2) How are piRNA clusters defined, and what regulates their expression? Analyzing what features differentiate a piRNA producing loci from any non-producing loci in the genome, we were able to single out some specific characteristics: . We showed that maternally inherited piRNAs are responsible to define germline clusters at the next generation through two mechanisms: in the nucleus, by deposition of H3K9me3 onto complementary genomic sequence, and, in the cytoplasm, by initiating the ping-pong cycle using cluster transcripts as substrates, leading to their processing into mature piRNAs.. We found that cluster promoters are essential to mediate full cluster transcription, which is allowed thanks to a very specific chromatin signature necessary to ensure piRNA production.
|
Page generated in 0.0975 seconds