• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 25
  • 3
  • Tagged with
  • 140
  • 140
  • 40
  • 39
  • 23
  • 23
  • 20
  • 16
  • 15
  • 15
  • 13
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Analyse du fonctionnement d'un plateau perforé : absorption de vapeur d'eau par des solutions eau-glycol.

Fossy, Michel, January 1900 (has links)
Th. doct.-ing.--Toulouse, I.N.P., 1978. N°: 21 bis.
62

Transfert de matière entre une goutte et un liquide : influence d'agents tensio-actifs.

Mekasut, Lursuang, January 1900 (has links)
Th. doct.-ing.--Toulouse, I.N.P., 1977. N°: 5.
63

Gasification reactions of carbon anodes; multi scale reaction model

Kavand, Mohammad 28 March 2022 (has links)
La réactivité des anodes de carbone avec le CO₂ est l'une des principales préoccupations des alumineries utilisant le procédé Hall-Héroult. Une telle réactivité n'est pas souhaitable car elle augmente la consommation nette de carbone et raccourcit ainsi la durée de vie des anodes. La surconsommation d'anode est affectée par la réactivité intrinsèque de l'anode et les phénomènes de transport de masse. Différents modèles mathématiques du processus de gazéification ont été développés pour différentes géométries et techniques : La première partie de ce travail se concentre sur la gazéification d'une seule particule d'anode de carbone avec du CO₂, en utilisant un modèle de réaction-transport détaillé, basé sur la cinétique intrinsèque de la réaction et le transport des espèces gazeuses. Le modèle comprend les équations de conservation de la masse pour les composants gazeux et les particules solides de carbone, ce qui donne un ensemble d'équations différentielles partielles non linéaires, résolues à l'aide de techniques numériques. Le modèle peut prédire le taux de génération de gaz, les compositions de gaz et le taux de consommation de carbone pendant la gazéification d'une particule de carbone. Différents modèles cinétiques ont été comparés pour décrire le comportement de gazéification des particules de carbone. Il a été constaté que le modèle de pores aléatoires (RPM) fournissait la meilleure description de la réactivité des particules d'anode. Le modèle a également prédit le retrait des particules pendant le processus de gazéification. Le modèle a été validé à l'aide de résultats expérimentaux obtenus avec différentes gammes de tailles de particules. Un bon accord entre les résultats du modèle et les données expérimentales a montré que cette approche pouvait quantifier avec succès la cinétique de gazéification et la distribution du gaz au sein de la particule anodique. De plus, le modèle Langmuir-Hinshelwood (L-H) est utilisé afin de capturer l'effet d'inhibition du monoxyde de carbone sur la réaction de gazéification. Dans la deuxième partie, la simulation du processus de gazéification de l'anode avec du CO₂, en tant que lit de particules d'anode a été considérée. Le modèle numérique de la méthode des éléments discrets CFD multi-échelles (DEM) a été développé sur la base d'un concept eulérien-lagrangien. Le modèle comprend une méthode des éléments finis eulériens (FEM) pour le gaz et les particules solides, et un DEM lagrangien pour la phase particulaire, cette dernière visant à capturer l'effet de retrait des particules (mouvement des particules lors de la gazéification). Les propriétés physiques des particules, telles que la porosité et la surface spécifique, et les propriétés thermochimiques des particules, telles que la chaleur de réaction, sont finalement suivies. Les changements géométriques des particules, le transfert de chaleur et de masse, le retrait des particules et les réactions chimiques sont pris en compte lors de la gazéification de l'anode avec du CO₂. Les profils dynamiques de concentration et de température du réactif et des gaz produits ainsi que la conversion solide ont été modélisés à la fois dans les vides entre les particules et les pores à l'intérieur de chaque particule. Pour valider le modèle, des tests expérimentaux ont été réalisés à l'aide d'un lit de particules anodiques. Dans la dernière partie, une simulation d'une dalle d'anode a été réalisée. Le modèle contient la masse et les équations de transfert de chaleur pour les composants gazeux et les particules solides de carbone, ce qui donne un ensemble d'équations différentielles partielles non linéaires, résolues à l'aide de techniques numériques. Le modèle peut prédire le taux de génération de gaz, les compositions de gaz et le taux de consommation de carbone, la chute de pression et la distribution de température pendant la gazéification d'une particule de carbone. / The reactivity of carbon anodes with CO₂ is one of the main concerns in aluminum smelters using the Hall-Héroult process. Such reactivity is not desirable because it increases the net carbon consumption and thus shortens the lifetime of the anodes. Anode overconsumption is affected by anode intrinsic reactivity and mass transport phenomena. Different mathematic models of the gasification process were developed for different geometries and technics: The first part of this work focuses on the gasification of a single carbon-anode particle with CO₂, using a detailed reaction-transport model, based on the reaction intrinsic kinetics and transport of gaseous species. The model includes the mass conservation equations for the gas components and solid carbon particles, resulting in a set of nonlinear partial differential equations, being solved using numerical techniques. The model may predict the gas generation rate, the gas composition, and the carbon consumption rate during the gasification of a carbon particle. Various kinetic models were compared to describe the gasification behavior of carbon particles. It was found that the Random pore model (RPM) provided the best description of the reactivity of anode particles. The model also predicted the particle shrinkage during the gasification process. The model was validated using experimental results obtained with different particle size ranges. Good agreement between the model results and the experimental data showed that this approach could quantify with success the gasification kinetics and the gas distribution within the anode particle. In addition, the Langmuir-Hinshelwood (L-H) model is used in order to capture the inhibition effect of carbon monoxide on the gasification reaction. In the second part, the simulation of the gasification process of anode with CO₂, as an anode particle bed, was considered. Numerical multiscale CFD-discrete element method (DEM) model was developed based on an Eulerian-Lagrangian concept. The model includes an Eulerian finite element method (FEM) for the gas and solid particles, and a Lagrangian DEM for the particle phase, the latter intending to capture the particle shrinkage effect (movement of particles during gasification). The physical properties of particles, such as porosity and specific surface area, and the thermochemical properties of particles, such as the heat of reaction, are ultimately tracked. Geometric changes in particles, heat and mass transfer, particle shrinkage and chemical reactions are considered during anode gasification with CO₂. The dynamic concentration and temperature profiles of the reactant and product gases as well as the solid conversion were modeled both in the voids between the particles and the pores inside each particle. To validate the model, experimental tests were performed using a bed of anode particles. In the last part, a simulation of the anode slab was carried out. The model contains the mass, and heat transfer equations for the gas components and solid carbon particles, resulting in a set of nonlinear partial differential equations, which are solved using numerical techniques. The model can predict the gas generation rate, gas compositions, and carbon consumption rate, pressure drop, and temperature distribution during the gasification of an anode slab.
64

Modélisation CFD du procédé de cuisson avec couplage des transferts de chaleur et de masse

Boulet, Micaël January 2012 (has links)
Une des composantes clefs pour l'amélioration de la qualité et de l'efficacité énergétique du procédé de cuisson est la capacité à modéliser et simuler celui-ci. Dû à la nature physique et géométrique de ce procédé très complexe, les techniques de Computational Fluid Dynamics (CFD) représentent un puissant outil de modélisation. Or, le recours aux méthodes CFD pour simuler la cuisson est une tendance récente et il n'y a pas encore de modèle couplant transfert de chaleur et de masse tout en considérant à la fois l'enceinte et le produit. Cette thèse présente un travail de recherche précurseur dans la modélisation CFD et multi-physique du procédé de cuisson, en particulier au niveau du couplage enceinte-produit. Dans un premier temps, considérant principalement l'enceinte, la simulation tridimensionnelle d'un four de laboratoire est réalisée en considérant le modèle k-epsilon realizable pour la turbulence et le modèle de radiosité S2S pour le rayonnement. En modélisant en détail un instrument de mesure au centre du four, la simulation est comparée aux mesures expérimentales. Il est ainsi démontré que la température des parois rayonnantes est un paramètre critique, due à la dominance du transfert par rayonnement. Une connaissance limitée de ces températures réduit la précision du modèle. Deuxièmement, afin de palier ce désavantage, une méthode inverse originale est développée afin de déterminer la température rayonnante des parois à partir de mesures d'un instrument placé au centre du four. Les résultats démontrent l'efficacité de la méthode tant dans sa capacité à retrouver les températures de parois que dans sa légèreté en coût de calcul. Ce dernier étant un avantage certain lorsque la méthode est implantée dans un code CFD, car ces codes sont intrinsèquement très intensifs en quantité de calcul. Finalement, un modèle couplant enceinte et produit en cuisson est modélisé et simulé. Le produit de cuisson est considéré multiphasique (eau liquide, vapeur et pâte sèche). Le changement de phase est modélisé avec une formulation originale où le taux d'évaporation obéit à une équation hors équilibre en dessous de 100°C, puis à une équation d'ébullition à partir de cette température. Grace à un maillage dynamique, un front d'évaporation est simulé pour la première fois en 2 dimensions Afin de tenir compte de la participation de l'humidité dans l'enceinte du four, le modèle de rayonnement Discrete Ordinates est utilisé. La simulation de l'évolution de la température ainsi que des phases liquide et vapeur dans le pain est en accord avec les comportements reconnus dans la littérature. Combiné à une corrélation reconnue pour le coefficient d'absorption, l'effet de l'humidité dans l'enceinte sur les flux de rayonnement est quantifié. Entre autre, une réduction significative de ces flux est observée lorsque les parois rayonnantes sont plus chaudes que l'air du four. La pose d'un modèle multi-physique englobant autant l'enceinte que le produit en cuisson est très prometteur pour l'amélioration du contrôle du procédé de cuisson. Ce travail de recherche développe un tel modèle et aboutit à des techniques originales de modélisation et de simulation propres à l'implantation dans les codes CFD.
65

Simulation numérique de transfert de masse dans une cellule d'électrolyse d'aluminium / Numerical simulation of mass transfer in high temperature aluminium electrolysis cell

Ariana, Mohsen January 2015 (has links)
Abstract : The harsh conditions of electrolytic bath in aluminium electrolysis cell have been an obstacle against the understanding of mass transfer that is at the origin of the aluminium production process. This knowledge is of great importance due to the impact that it could have on the functional parameters of the cell like current efficiency. Numerical modelling is a way to overcome the difficulties and to shed light over the hidden aspects of the electrochemical process. The electrolyte typically used in an aluminum electrolysis cell is composed of different ions moving in the electromagnetic field generated by the high intensity current needed for this industrial application. The behaviour of these ions is under the influence of concentration gradients (diffusion) and depends also on other phenomena in the cell like bath flow (convection) and electric field (migration). In this study, the coupling between these fields is treated for 1D and 2D models of the cell. The relative importance of migration and diffusion are compared for two different categories of electroactive and electroinactive ions in a transient model. For both categories of ions, migration is the dominant form of mass transfer in the very first stages of electrochemical process. However, diffusion becomes the dominant mechanism of mass transfer for electroactive ions in developed boundary layers. In 2D model, there is a concentration gradient between interelectrode and near sidewalls region. Consequently, there is a diffusion of ions in and out of the interelectrode space to diminish the depletion or overconcentration of certain electroactive ions like Al[subscript 2]OF[subscript 6][superscript -2] and AlF[subscript 4][superscript -] at the electrodes. Furthermore, the impact of convection and bath equilibrium in addition to a more suitable mass transfer model has been studied on a parallel plate electrodes reactor. Finally, an open source library is developed and built on OpenFoam (an open source C++ CFD platform) that is capable of solving mass transfer equations for different models. The description and findings of this thesis will shed light on the mass transfer mechanisms in both bulk region and boundary layers, and can be used for further studies in this field. / Résumé : L’étude des mécanismes de transfert de masse des ions dans le bain électrolytique dans une cellule d’électrolyse d’aluminium se heurte aux conditions sévères qui y sont rencontrées : haute température, milieu corrosif, etc. Cependant, il est important de connaitre ces mécanismes de transfert en raison de leurs grands impacts sur les paramètres indicatifs du procédé d’électrolyse, par exemple l’efficacité du courant. Le calcul numérique est une façon de surmonter ces difficultés et d’éclairer les aspects moins connus du procédé de production d’aluminium. L’électrolyte utilisé pour l’électrolyse est composé par différents ions qui se déplacent dans un champ électromagnétique. Ce dernier est généré par le courant électrique intense qui passe par la couche d’aluminium et le bain. Le comportement dynamique des ions est sujet à leur gradient de concentration (la diffusion), à l’écoulement du bain (la convection) et au champ électrique (la migration). Dans le cadre de cette étude, le mouvement des ions est analysé et l’importance relative de la diffusion et de la migration est comparée en régime transitoire pour deux classes d’espèces électroactives et non-électroactives. Pour ces deux types d’espèces, on observe que la migration est le mécanisme dominant de transfert de masse dès les premières phases de l’électrolyse. Cependant, la diffusion devient graduellement le mécanisme le plus important aux électrodes pour des espèces électroactives comme Al[indice inférieur 2]OF[indice inférieur 6][indice supérieur -2] et AlF[indice inférieur 4][indice supérieur -]. Le champ électrique et le champ de concentration ont été simulés à partir d’un modèle 2-D. Les résultats montrent qu’il y a un gradient de concentration entre l’espace inter-électrodes et la région proche de la couche de gelée. Par conséquent, il y a diffusion des espèces entre ces deux régions qui vient diminuer le gradient de concentration et ainsi éviter l’épuisement des ions Al[indice inférieur 2]OF[indice inférieur 6][indice supérieur -2] ou la surconcentration des ions AlF[indice inférieur 4][indice supérieur -]. En outre, un code libre a été développé et implémenté sur OpenFOAM (une plateforme libre de librairies C++). Ce code est capable de résoudre simultanément les équations du champ électrique, du transfert de masse et de Navier-Stokes. Les principaux apports de cette thèse, tel que les modèles et résultats obtenus, peuvent éclairer les mécanismes de transfert de masse dans le bain et aux électrodes et ainsi améliorer leur compréhension.
66

Modélisation de la production de pâtes alimentaires traditionnelles et enrichies

Mercier, Samuel January 2016 (has links)
Les pâtes enrichies représentent un produit d’intérêt pour l’industrie, car elles offrent aux consommateurs la possibilité de profiter des bienfaits sur la santé de l’ingrédient d’enrichissement sans modifier leurs habitudes alimentaires. Cependant, la durée et le coût du développement de nouvelles pâtes enrichies sont significatifs et limitent leur probabilité de succès commercial. Dans cette thèse, des modèles ont été développés pour décrire la production des pâtes traditionnelles et enrichies et accélérer leur développement. Deux objectifs généraux ont été poursuivis. Le premier objectif était l’identification et la quantification des mécanismes de transfert affectant la qualité des pâtes lors du séchage, leur étape de transformation la plus importante. L’état de l’art a révélé que les modèles développés précédemment pour décrire le séchage des pâtes combinent la description des mécanismes de transfert de masse de l’eau à partir d’un coefficient de diffusion effectif. La qualité de ces modèles a été évaluée par analyses de sensibilité, d’incertitude et d’identifiabilité. Ces analyses ont montré que l’incertitude des modèles précédents sur la prédiction du temps de séchage requis est importante (environ ± 4 h) et que cette incertitude peut être expliquée par la faible identifiabilité pratique des coefficients de transfert de masse à partir de mesures bruitées de la teneur en eau. L’analyse des modèles de séchage précédents a également montré leur imprécision à décrire les profils internes de teneur en eau générés dans les pâtes lors du séchage, alors que ces profils en eau sont critiques à la prédiction de la formation de craques. Cette thèse a donc conduit au développement d’un nouveau modèle de séchage mécanistique, couplant le transfert de masse de l’eau liquide par capillarité et convection, le transfert de masse de l’eau vapeur par diffusion et convection, le transfert d’énergie par conduction, convection et évaporation et la déformation mécanique. Ce modèle a été validé pour 3 températures de séchage (40, 60 et 80 ºC) représentatives des conditions utilisées en industrie. Le deuxième objectif était la quantification de l’impact de l’enrichissement et des variables de procédé sur les propriétés des pâtes. Cet objectif a été atteint par la construction et la méta-analyse d’une base de données regroupant les propriétés des pâtes traditionnelles et enrichies mesurées dans la littérature. Les propriétés manquantes de la base de données ont été estimées par le développement d’une approche novatrice et originale basée sur la complétion de matrice. L’approche par complétion de matrice a permis d’expliquer en moyenne 40% de la variance des propriétés manquantes. Elle a également permis de déterminer pour près de 20% des propriétés manquantes, avec un niveau de confiance de plus de 90%, si elles sont supérieures ou inférieures à la valeur moyenne de la propriété, améliorant la caractérisation du produit sans coût expérimental additionnel. Les travaux de cette thèse ont conduit à la réalisation de 7 articles dans des revues avec comité de lecture et ont été présentés à 4 congrès internationaux. Les travaux ont permis le développement de 2 outils, le modèle de séchage mécanistique et l’estimation des propriétés manquantes par complétion de matrice, que l’industrie pourra utiliser pour accélérer le développement de nouvelles pâtes enrichies. Plusieurs contributions majeures de cette thèse, notamment l’établissement des conditions expérimentales pour l’identifiabilité pratique des coefficients de transfert de masse et les méthodologies pour la méta-analyse d’un produit et l’estimation de ses propriétés manquantes par complétion de matrice, ont été appliquées aux pâtes enrichies, mais leur impact s’étend à de nombreux produits et procédés.
67

Catalytic synthesis and decomposition of peroxycarboxylic acids

Leveneur, Sébastien 23 October 2009 (has links) (PDF)
L'objectif de cette thèse fut de développer un process pour la production d'acide peroxycarbolique à partir du peroxyde d'hydrogène et d'un acide carboxylique dans un réacteur continu. Dans un premier temps, la stabilité des espèces peroxydées fut étudiée en utilisant une méthode d'analyse en direct (spectromètre de masse). Un effort particulier a été apporté pour trouver un catalyseur hétérogène ne provoquant pas la décomposition des espèces peroxydées et ayant une activité catalytique similaire à l'acide sulfurique. Un réacteur en continu en lit fixe a été construit en utilisant des résines échangeuses de cation.
68

Développements de la microscopie électrochimique pour la microfabrication. Application à l'élaboration de surfaces à contraste de mouillage sur des supports fluorés.

Fuchs, Adrien 25 April 2006 (has links) (PDF)
Notre objectif est de fabriquer par microscopie électrochimique (SECM) des motifs hydrophiles sur un support hydrophobe afin de les inclure ultérieurement dans des microsystèmes. Nous avons considéré du point de vue théorique la microgravure de surface par SECM. Pour cela nous avons étudié par simulation numérique l'influence du balayage d'une surface par une microélectrode disque sur la réponse en courant et avons adapté théoriquement et expérimentalement le SECM à une microélectrode bande. Nous avons appliqué ces résultats à la réalisation de motifs de haute énergie en forme de bande sur une surface fluorée (PTFE et verre silanisé). Nous avons évalué la variation de l'énergie de surface liée à la présence de ces motifs par mesure des angles de contact et de la déformation locale de la ligne triple d'un liquide. Cette étude révèle des effets liés à l'hétérogénéité des surfaces utilisées. Dans la perspective de former un film mince liquide sur un motif, nous avons étudié les phénomènes de condensation d'un liquide au niveau d'une modification de surface.
69

Couplage de la convection naturelle et du rayonnement dans les mélanges gazeux absorbants-émettants

Ibrahim, Adel 14 January 2010 (has links) (PDF)
Le travail mené dans le cadre de cette thèse porte sur l'étude de l'impact du rayonnement sur l'écoulement de convection naturelle dans une cavité contenant un mélange gazeux binaire dont un des composants rayonne dans l'infrarouge. Dans le premier chapitre, nous présentons les méthodes numériques utilisées. Elles s'appuient sur un modèle de rayonnement fondé sur la méthode des ordonnées discrètes (pour résoudre l'équation de transfert radiatif dans des conditions spectrales données) et le modèle SLW pour prendre en compte le spectre réel d'absorption du gaz tout en restant dans une approche compacte. Le module radiatif ainsi développé a été implémenté dans le code CFD AQUILON du laboratoire TREFLE (Bordeaux). Dans le deuxième chapitre, l'étude porte sur l'effet du rayonnement en convection de double diffusion dans une cavité contenant des mélanges air-CO2 ou air-H2O. Ici, l'air est traité comme gaz parfaitement transparent dans l'infrarouge et le polluant (CO2 ou H2O) est l'espèce absorbante. L'écoulement obtenu est généré par les forces de poussées d'Archimède lorsque le fluide est soumis simultanément à des variations de température et de concentration. Dans cette configuration, il existe un couplage direct entre les champs thermique et massique à travers les propriétés radiatives de mélange. En effet, les variations de concentration de l'espèce absorbante (CO2 ou H2O) modifient localement les propriétés d'émission-absorption du fluide et, par conséquent, influencent les sources et les flux d'origine radiative. Ce nouveau type de couplage induit un changement radical de la dynamique de l'écoulement et des transferts associés, notamment en affectant les conditions de stabilité. On montre en particulier que, dans les cas opposants, le rayonnement du gaz favorise le maintien d'instabilités thermosolutales, empêchant l'établissement d'une solution stationnaire. Dans le troisième chapitre, nous nous sommes intéressés à l'effet du rayonnement sur la convection naturelle turbulente dans une cavité remplie d'air à 50% d'humidité (cas représentatif d'une pièce d'habitation, par exemple). Il est tenu compte de la participation radiative de la vapeur d'eau. Les équations de conservation du mouvement et de l'énergie ont été traitées en régime turbulent par une approche LES, à un nombre de Rayleigh de l'ordre de 1,5×109. On montre que, même si la fraction molaire de gaz absorbant est faible (xH20 = 0,0115), le rayonnement de gaz influe sur la thermique et la dynamique de l'écoulement en particulier lorsque les dimensions de la cavité deviennent grandes. En particulier, la stratification thermique au centre de la cavité est atténuée.
70

Mise au point dun réacteur biphasique eau/huile de silicone destiné au traitement des composés organiques volatils hydrophobes au sein des effluents gazeux/Development of a water / silicone-oil two-phase partitioning bioreactor for the treatment of hydrophobic volatile organic compounds from gas effluents

ALDRIC, Jean-Marc 24 August 2009 (has links)
Récemment, de nombreuses recherches ont été dévolues à la mise au point de réacteurs biphasiques, perçus comme une nouvelle technologie pour le traitement des polluants organiques dans les effluents gazeux. Ces réacteurs impliquent lutilisation dune seconde phase non aqueuse pour améliorer la solubilité et le transfert de masse des composés hydrophobes. Dans ce travail, nous avons développé un réacteur biphasique agité utilisant lhuile de silicone comme seconde phase. Initialement, Rhodococcus erythropolis T 902.1 a été sélectionné sur base de sa capacité à dégrader lisopropylbenzène (IPB), un composé choisi comme modèle représentatif de la famille du benzène. Deuxièmement, le transfert de masse de loxygène et de lIPB a été étudié en relation avec les conditions hydrodynamiques du réacteur et le type dhuile de silicone. Lutilisation dune proportion de 10 % dhuile de faible viscosité (10cSt) naffecte pas significativement le transfert de masse de loxygène. Cependant la grande solubilité de lIPB dans lhuile de silicone conduit à une forte augmentation du potentiel de transfert, spécialement pour les proportions en huile les plus élevées. Néanmoins, il ne semble pas utile de dépasser une proportion de 10 % car le KLaIPB et le KLaO2 diminuent drastiquement pour des proportions supérieures. Lexistence dune concentration optimale en élément biotique apparaît également. En effet, les concentrations optimales en biomasse (B) et extrait surfactant (ES) peuvent être évaluées à, respectivement 0,5 g/L et 0,7 g/L, elles assurent une valeur maximale du coefficient global de transfert de masse de loxygène (KLaO2). Plus spécifiquement, lES augmente laire interfaciale « a » en diminuant le diamètre des bulles tandis que la biomasse la diminue dès quune concentration de 1 g/L est atteinte. Au contraire, lES agit négativement sur le KL tandis que la biomasse laméliore globalement. En terme de performance, il est clairement montré que la taux de biodégradation de lIPB est davantage corrélé au débit gazeux de leffluent quà la concentration en polluant. Le réacteur biphasique a été suivi sur une période de 38 jours afin de caractériser son comportement à moyen terme pour différentes conditions opératoires. Lors dune phase dalimentation transitoire (10h/j), la capacité moyenne délimination est denviron 240 g/m3 pour une charge massique de 390 g/m3. Finalement, une approche originale a été développée en utilisant un bioréacteur de type scale-down pour reproduire les conditions hydrodynamiques rencontrées dans les réacteurs industriels. Il est clairement démontré que le polluant (IPB) affecte négativement lextrapolation en augmentant la vitesse de séparation de phase. Cependant cet impact négatif est largement compensé par la présence déléments biotiques qui stabilise fortement le système biphasique, rendant totalement envisageable lextrapolation à grande échelle. En conclusion, lutilisation dun réacteur biphasique eau-huile de silicone pour lélimination de concentrations élevées (~ 6g/m3) en polluants hydrophobes est adéquate. Le réacteur proposé présente de réelles opportunités pour le traitement biologique deffluents pollués par des composés hydrophobes. Son utilisation pourrait être envisagée lorsque loxydation thermique savère trop onéreuse ou lorsque les biofiltres classiques atteignent leurs limites ( >1 g/Nm3 et une charge volumique de 90m3/m3.h.)./Recently, a lot of research has been devoted to the study of two-phase partitioning bioreactors (TPPB) as new technology for xenobiotic degradation in gaseous effluents. These reactors involve the use of a second non-aqueous phase to improve the solubility and transfer of hydrophobic compounds. In this work, we have developed a stirred two-phase partitioning bioreactor using silicone oil as second phase. Initially, Rhodococcus erythropolis T 902.1 was selected on the basis of its capacity to metabolize isopropyl-benzene (IPB), used as representative of the benzene-containing compounds. Secondly, the mass transfer of both IPB and oxygen has been considered with relation to their influence on the hydrodynamics of the reactor and the type of silicone oil used. The addition of 10% low viscosity silicone oil (10 cSt) in the reactor does not significantly affect the oxygen transfer rate. The very high solubility of IPB in the silicone oil leads to an enhancement of the driving force term, especially when high proportion of silicone oil are used. However, it is not necessary to use a volume fraction higher than 10% since KLaIPB and KLaO2 decrease sharply at above such proportion. In addition, an optimal concentration appeared to exist for both biotic components, respectively 0,5 g/L and 0,7 g/L for biomass (B) and surfactant extract (SE) when the global mass transfer coefficient (KLa) of oxygen was measured in the TPPB. More specifically, SE improved the interfacial area a by decreasing the bubble diameter, while B reduced it at concentrations up to 1 g/L. In contrast, the SE concentration acted negatively on KL, while it was favoured by the B concentration. In term of performances, it was clearly shown that the biodegradation rate is more directly related to the inlet flow of IPB than to the concentration of IPB in the inlet gas. The TPPB was monitored for 38 days to characterise its behaviour under several operational conditions. During an intermittent loading phase (10 h/day), the average elimination capacity remained above 240 g/m3.h for an average IPB inlet load of 390 g/m3. h. Finaly, an original approach was developed using a scale-down bioreactor allowing to reproduce the hydrodynamics encountered under full scale TPPB. It was clearly shown that the IPB affects negatively the scaling-up of the process by increasing the speed of phase partitioning. However, this negative impact was strongly compensated by the presence of biotic compounds stabilizing the two phase system and rendering the scaling-up process feasible. In conclusion, the use of a water-silicone oil TPPB to remove a high inlet load of IPB was successful. The proposed reactor retains a high potential for the biological treatment of gas effluents polluted by hydrophobic aromatic compounds. The suggested process might be applied in the range of concentration and flow where thermal oxidation is too expensive (between 1 and 7 g/Nm3) or when the biofilters are usually limited, i.e. to treat a polluted effluent concentrated with > 1 g/Nm3 at a flow of 90m3/m3.h.

Page generated in 0.1384 seconds