• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 3
  • 1
  • Tagged with
  • 28
  • 18
  • 12
  • 11
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Caractérisation de la sous-unité bêta du translocon chez la levure Schizosaccharomyces pombe

Leroux, Alexandre 12 1900 (has links)
La sécrétion des protéines est un processus essentiel à la vie. Chez les eucaryotes, les protéines sécrétées transitent dans le réticulum endoplasmique par le pore de translocation. Le translocon est composé de trois sous-unités fondamentales nommées Sec61α, β et γ chez les mammifères, ou Sec61p, Sbh1p et Sss1p chez les levures. Tandis que le rôle des sous-unités α et γ est bien connu, celui de la sous-unité β demeure énigmatique. Plusieurs phénotypes distincts sont associés à cette protéine dans différents organismes, mais le haut niveau de conservation de séquence suggère plutôt une fonction universelle conservée. Récemment, Feng et al. (2007) ont montré que le domaine transmembranaire (TMD) de Sbh1p était suffisant pour complémenter plusieurs phénotypes associés à la délétion du gène chez Saccharomyces cerevisiae, suggérant un rôle important de cette région. L’objectif de mon projet de recherche consiste à étudier la fonction biologique de la sous-unité β du translocon et de son TMD chez Schizosaccharomyces pombe. Dans cette levure, j’ai découvert que le gène sbh1+ n’était pas essentiel à la viabilité à 30oC, mais qu’il était requis pour la croissance à basse température. La délétion de sbh1+ entraîne une sensibilité aux stress de la paroi cellulaire et une diminution de la sécrétion des protéines à 23oC. La surexpression de Sbh1p diminue elle aussi la sécrétion des protéines et altère la morphologie cellulaire. Ces phénotypes sont distincts de ceux observés chez S. cerevisiae, où la délétion des deux paralogues de Sec61β entraîne une sensibilité à haute température plutôt qu’à basse température. Malgré cela, les homologues de Sec61β de S. pombe et de S. cerevisiae sont tout deux capables de complémenter la thermosensibilité respective de chaque levure. La complémentation est possible même avec l’homologue humain de Sec61β, indiquant la conservation d’une fonction de Sec61β de la levure à l’homme. Remarquablement, le TMD de Sec61β de S. pombe, de S. cerevisiae et de l’humain sont suffisants pour complémenter la délétion génomique autant chez la levure à fission que chez la levure à bourgeons. Globalement, ces observations indiquent que le TMD de Sec61β exerce une fonction cellulaire conservée à travers les espèces. / Protein secretion is an essential biological process. In eukaryotes, secreted proteins transit into the endoplasmic reticulum through the translocon pore. The core of the translocation channel is composed of three subunits called Sec61α, β and γ in mammals, or Sec61p, Sbh1p and Sss1p in yeasts. While the role of the α and γ subunit is well understood, the function of the β subunit remains ill-defined. Although numerous species-specific phenotypes have been reported for this protein, the striking sequence conservation among species argue in favour of a universal role. Recently, Feng et al. (2007) reported the surprising finding that the transmembrane domain (TMD) of Sbh1p was sufficient to complement different functions of the entire protein in Saccharomyces cerevisiae, suggesting an important role for this region. The aim of my project was to explore the biological function of the translocon β subunit and its TMD in Schizosaccharomyces pombe. In this yeast, we found that the sbh1+ gene is unessential for viability at 30oC, but is required for growth at low temperature. Knockout of sbh1+ results in sensitivity to cell-wall stress and reduced protein secretion at 23oC. Overexpression of Sbh1p also diminishes protein secretion and results in an elongated cell shape. These phenotypes contrast with those observed S. cerevisiae, as deletion of both Sec61β paralogs in this yeast results in heat sensitivity instead of cold sensitivity. Nevertheless, Sec61β homologs from both S. pombe and S. cerevisiae complement the respective temperature sensitivity of either yeast. This functional complementation can also be accomplished by the human homolog of the translocon β subunit, indicating that a fundamental function of Sec61β is conserved from yeast to human. Remarkably, the TMD of Sec61β homologs from S. pombe, S. cerevisiae and human are sufficient to complement the gene knockout in both fission and budding yeasts. Together, these observations indicate that the TMD of Sec61β exerts a cellular function that is conserved across species.
12

Caractérisation de la sous-unité bêta du translocon chez la levure Schizosaccharomyces pombe

Leroux, Alexandre 12 1900 (has links)
La sécrétion des protéines est un processus essentiel à la vie. Chez les eucaryotes, les protéines sécrétées transitent dans le réticulum endoplasmique par le pore de translocation. Le translocon est composé de trois sous-unités fondamentales nommées Sec61α, β et γ chez les mammifères, ou Sec61p, Sbh1p et Sss1p chez les levures. Tandis que le rôle des sous-unités α et γ est bien connu, celui de la sous-unité β demeure énigmatique. Plusieurs phénotypes distincts sont associés à cette protéine dans différents organismes, mais le haut niveau de conservation de séquence suggère plutôt une fonction universelle conservée. Récemment, Feng et al. (2007) ont montré que le domaine transmembranaire (TMD) de Sbh1p était suffisant pour complémenter plusieurs phénotypes associés à la délétion du gène chez Saccharomyces cerevisiae, suggérant un rôle important de cette région. L’objectif de mon projet de recherche consiste à étudier la fonction biologique de la sous-unité β du translocon et de son TMD chez Schizosaccharomyces pombe. Dans cette levure, j’ai découvert que le gène sbh1+ n’était pas essentiel à la viabilité à 30oC, mais qu’il était requis pour la croissance à basse température. La délétion de sbh1+ entraîne une sensibilité aux stress de la paroi cellulaire et une diminution de la sécrétion des protéines à 23oC. La surexpression de Sbh1p diminue elle aussi la sécrétion des protéines et altère la morphologie cellulaire. Ces phénotypes sont distincts de ceux observés chez S. cerevisiae, où la délétion des deux paralogues de Sec61β entraîne une sensibilité à haute température plutôt qu’à basse température. Malgré cela, les homologues de Sec61β de S. pombe et de S. cerevisiae sont tout deux capables de complémenter la thermosensibilité respective de chaque levure. La complémentation est possible même avec l’homologue humain de Sec61β, indiquant la conservation d’une fonction de Sec61β de la levure à l’homme. Remarquablement, le TMD de Sec61β de S. pombe, de S. cerevisiae et de l’humain sont suffisants pour complémenter la délétion génomique autant chez la levure à fission que chez la levure à bourgeons. Globalement, ces observations indiquent que le TMD de Sec61β exerce une fonction cellulaire conservée à travers les espèces. / Protein secretion is an essential biological process. In eukaryotes, secreted proteins transit into the endoplasmic reticulum through the translocon pore. The core of the translocation channel is composed of three subunits called Sec61α, β and γ in mammals, or Sec61p, Sbh1p and Sss1p in yeasts. While the role of the α and γ subunit is well understood, the function of the β subunit remains ill-defined. Although numerous species-specific phenotypes have been reported for this protein, the striking sequence conservation among species argue in favour of a universal role. Recently, Feng et al. (2007) reported the surprising finding that the transmembrane domain (TMD) of Sbh1p was sufficient to complement different functions of the entire protein in Saccharomyces cerevisiae, suggesting an important role for this region. The aim of my project was to explore the biological function of the translocon β subunit and its TMD in Schizosaccharomyces pombe. In this yeast, we found that the sbh1+ gene is unessential for viability at 30oC, but is required for growth at low temperature. Knockout of sbh1+ results in sensitivity to cell-wall stress and reduced protein secretion at 23oC. Overexpression of Sbh1p also diminishes protein secretion and results in an elongated cell shape. These phenotypes contrast with those observed S. cerevisiae, as deletion of both Sec61β paralogs in this yeast results in heat sensitivity instead of cold sensitivity. Nevertheless, Sec61β homologs from both S. pombe and S. cerevisiae complement the respective temperature sensitivity of either yeast. This functional complementation can also be accomplished by the human homolog of the translocon β subunit, indicating that a fundamental function of Sec61β is conserved from yeast to human. Remarkably, the TMD of Sec61β homologs from S. pombe, S. cerevisiae and human are sufficient to complement the gene knockout in both fission and budding yeasts. Together, these observations indicate that the TMD of Sec61β exerts a cellular function that is conserved across species.
13

Structure et dynamique fonctionnelle du domaine transmembranaire de la protéine SNARE VAMP2 lors de l’exocytose

Hastoy, Benoit 20 December 2011 (has links)
Le maintien de l’homéostasie passe notamment par la sécrétion d’hormones provenant des cellules neuro-endocrines ou endocrines telles que les cellules chromaffines ou les cellules b pancréatiques. Par exemple, la régulation de la glycémie nécessite l’exocytose de l’insuline depuis les cellules b pancréatiques des îlots de Langerhans. Une famille de protéines membranaires est au cœur de la machinerie de fusion d’une vésicule avec la membrane plasmique. Ce groupe appelé, la famille des protéines SNARE est composé de trois protéines. VAMP2 est localisée à la membrane vésiculaire alors que syntaxine 1A et SNAP25 sont localisées à la membrane plasmique. Syntaxine 1A et VAMP2 ont un domaine transmembranaire alors que SNAP25 est reliée à la membrane par prénylation de résidus cystéine. Cette famille forme le complexe cytosolique SNARE décrit comme essentiel à l’exocytose. La structure et la fonction du complexe cytosolique ont été étudiées en profondeur et ont mené au modèle du « zipper ». Celui-ci décrit un enroulement progressif des domaines cytosoliques SNARE permettant l’apposition des membranes puis la fusion. Le rôle des domaines transmembranaires reste encore peu décrit. Pourtant, leur étude est nécessaire afin d’établir un modèle complet de la fusion membranaire par les protéines SNARE. Nous avons donc mené une étude alliant une analyse structurale dynamique à une analyse biologique pour déterminer l’importance du domaine transmembranaire de VAMP2 dans la sécrétion. L’analyse biologique représente donc le centre de ma thèse. Le système biologique utilisé est basé sur l’extinction de l’expression de la protéine VAMP2 endogène et l’expression concomitante d’une protéine VAMP2 mutée dans son domaine transmembranaire. Deux lignées cellulaires considérées comme des modèles dans l’étude de la sécrétion hormonale et du trafic vésiculaire ont servi de support à notre étude. Par des approches de microscopies (confocal, TIRF) et d’analyses biochimiques, nous avons observé les conséquences fonctionnelles des mutations ponctuelles, établis par mutagénèse dirigée, sur le trafic vésiculaire et sur la capacité des cellules à sécréter.Les mutations induites présentent différents effets cellulaires. Certaines bloquent la sortie de VAMP2 du réseau golgien alors que d’autres ont un effet important sur la sécrétion hormonale et plus précisément sur l’exocytose. Les études structurales ont permis de corréler ces effets avec une diminution de la flexibilité structurale dans le cas de la diminution de l’exocytose, ou avec une restriction à la conformation hélice alpha dans le cas du sorting. Ce projet pluridisciplinaire a pu mettre en avant le rôle biologique du domaine transmembranaire de VAMP2 au cours de l’exocytose probablement soutenue par la dynamique conformationelle unique observée par le versant structural du projet. / The hormonal secretion plays a key role in the maintenance of homeostasis. For example, the maintenance of normoglycaemia requires insulin exocytosis from the pancreatic beta cells. The SNARE membrane family protein has been described as the core machinery of fusion between the vesicle containing hormones and the plasma membrane. This family consists of 3 different membrane proteins that are essential during exocytosis. VAMP2 is localized on the vesicle and Syntaxin 1A - on the plasma membrane. They both are transmembrane protein whereas SNAP25 is linked to the plasma membrane by palmitoylation. The SNAREs appear to be essential as they form the cytosolic SNARE complex to dock the vesicle to the plasma membrane. Even though the role of this cytosolic domain has been studied in depth, much less is known on the role of their transmembrane domain during the fusion. Their study remains necessary to establish a complete model of membrane fusion mediated by the SNARE proteins.Here, we have studied the behavior and the role of the SNARE transmembrane domain during exocytosis. In a multidisciplinary project, we have combined a structural approach with a biological study to evaluate the role of this domain. Using mutagenesis in the transmembrane domain of VAMP2 and a cellular system with a clean background, we have assessed the effect of mutations on the secretion and exocytosis in two different cell lines (INS1E and PC12). The biological system is based on the silencing of endogenous VAMP2 and reconstitution of the expression of VAMP2 wt or mutated in the transmembrane domain. Using biochemistry assay and TIRF microscopy we have shown that mutations in this domain can lead to a missorting of the Golgi apparatus or a reduction of the stimulated secretion and exocytosis. This effect can be correlated to a modification of the structural dynamics of this domain.The obtained results clearly demonstrate the role of the transmembrane domain of VAMP2 during exocytosis probably sustained by its unique structural dynamics observed by physico-chemistry.
14

Dissection des interactions entre les composants du système de sécrétion de type II chez la bacterie phytopathogène Erwinia chrysanthemi (Dickeya dadantii) / Dissection of interactions between the Type Il secretion system components of the phytopathogen bacterium Erwinia chrysanthemi (Dickeya dadantii)

Lallemand, Mathilde 10 January 2011 (has links)
Le système de sécrétion de type II (T2SS) est largement répandu chez les bactéries à Gram négatif. Il permet la sécrétion d’enzymes lytiques et de toxines. Chez la bactérie phytopathogène Erwinia chrysanthemi, les pectinases, sécrétées par ce système appelé Out, dégradent la pectine, provoquant les symptômes de pourriture molle. La sécrétion par le T2SS se passe en 2 étapes : les protéines traversent la membrane interne par le système Sec ou le système Tat. Une fois dans le périplasme, elles sont repliées et transloquées par le T2SS à travers la membrane externe. Le système Out est composé de 14 protéines intégrées ou associées à l’une des deux membranes. Son assemblage et son fonctionnement restent obscurs. Une plateforme serait formée dans la membrane interne par OutE, -F, -L, -M et –C. Ces trois derniers composants sont des protéines bitopiques dont la stœchiométrie et le rôle sont inconnus. Pour identifier des interactions entre ses composants, nous avons utilisé le double-hybride bactérien, basé sur la reconstitution de l’activité d’adénylate cyclase. Nous avons démontré que le domaine de type ferrédoxine, situé en C-terminus d’OutL et d’OutM, est directement impliqué dans l’homo- et l’hétérodimérisation de ces protéines. Une interaction entre les régions périplasmiques d’OutC et d’OutD a été aussi détectée (Login et al., 2010). Pour mieux analyser les multiples interactions au sein du T2SS, des expériences de triple-hybride ont été réalisées en co-exprimant différentes combinaisons des régions solubles de trois composants. Nos résultats suggèrent qu’OutL empêche l’interaction entre OutC et OutD. Par ailleurs, OutL est impliquée dans l’activation de l’ATPase OutE, le moteur du système (Camberg et al., 2007). OutL serait donc impliquée dans la transmission du signal entre le périplasme et le cytoplasme et pourrait intervenir dans la dissociation du complexe OutD/OutC. Afin d’analyser le rôle des segments transmembranaires (TMS) de composants du T2SS, nous avons adapté la technique du double-hybride. Le domaine de la protéine rapporteur Cya a été fusionné au N-terminus du TMS et BlaM au C-terminus. BlaM sert à contrôler la topologie correcte des fusions dans la membrane. Plusieurs interactions bi-partenaires entre les TMS d’OutC, OutL et OutM ont été ainsi détectées. Ce travail a été complété par une étude in vitro (pull-down) et par mutagenèse dirigée. Ces interactions TMS-TMS pourraient intervenir dans la transmission du signal du périplasme vers le cytoplasme à travers la membrane interne. / The type II secretion system (T2SS) is widely used to secrete toxins and lytic enzymes by animal and plant pathogenic Gram-negative bacteria. The phytopathogen bacterium Erwinia chrysanthemi secretes several pectinases by the T2SS called Out and causes soft rot disease. The exoproteins cross the cytoplasmic membrane either by the Sec or Tat systems. Once in the periplasm, the folded exoproteins are translocated across the outer membrane by the T2S machinery. The Out system is composed of 14 proteins integrated in or associated with the two bacterial membranes. The molecular organization and the mode of action of the T2SS remain unclear. Several components of this T2SS, OutC, -L, -M, -F and -E, are thought to form a platform in the inner membrane OutC, -Land -M are bitopic inne membrane but their stoichiometry and role in secretion are unknown. We used a bacterial two-hybrid system to detect protein interactions We have shawn that the ferredoxin-like domain at the C-terminus of OutL and OutM allows homo- and - heterodimerization of these proteins. An interaction between OutC and OutD periplasmic regions has been detected (Login et al., 201 0). Three-hybrid has been performed and our results suggest that OutL would destabilize the interaction between OutC and OutD. Also, OutL is implicated in the activation of ATPase OutE, which is thought to be the motor of the system (Cam berg et al., 2007). Thus, OutL could be implicated in the signal transduction from periplasme to cytoplasm and could dissociate the OutC/ OutD complex. To analyse protein-protein interactions within bacterial membranes, we developed a system specially adapted from the bacterial two-hybrid. One of the sub-domain of Cya has been fused to the N-terminus of TMS and BlaM to the C-terminus. Correct topology of fusions can be controlled using BlaM properties. B using this assay znd site-directed mutagenesis, we detected multiple bi-partner interactions between the TMS of OutC, OutL and OutM.
15

Axe et rotaxane parapluie : vers de nouveaux transporteurs transmembranaires de chlorures et de médicaments cycliques

Chhun, Christine 01 1900 (has links)
La membrane cellulaire est principalement une bicouche phospholipidique constituant une barrière qui régule les échanges entre la cellule et son environnement. Son intérieur hydrophobe empêche le passage d’espèces hydrophiles, chargées, de grande masse moléculaire et polaires, qui sont généralement transportées par des protéines à travers la bicouche. Dans certains cas de systèmes défectueux (e.g. les canalopathies), l’équilibre des concentrations en ions à l’intérieur et à l’extérieur des cellules est perturbé et les cellules sont compromises. C’est pourquoi le développement de transporteurs transmembranaires synthétiques est nécessaire. De nombreux travaux ont été faits dans le développement de transporteurs synthétiques d’anions (particulièrement du chlorure). Dans cette thèse, nous présentons nos travaux sur un nouveau transporteur d’anion appelé axe parapluie, capable de changer de conformation dépendamment de la polarité de son environnement. Dans un premier temps, nous avons conçu le design, puis synthétisé ces axes parapluie qui montrent une importante activité en tant que transporteur de chlorures. Ces composés réunissent deux concepts : - Le parapluie, constitué d’acides biliaires amphiphiles (une face hydrophile, une face hydrophobe). La flexibilité des articulations combinée à la grande surface des acides choliques permettent d’empêcher les interactions défavorables entre les parties hydrophiles et hydrophobes, ce qui facilite l’insertion dans la bicouche. - Un site ammonium secondaire en tant que site de reconnaissance, capable de former des ponts hydrogène avec des ions chlorure. De plus, l’axe peut complexer une roue de type éther couronne pour former un pseudo-rotaxane ou rotaxane parapluie ce qui résulte en l’inhibition partielle de leurs propriétés de transport. Ceci nous mène au second objectif de cette thèse, le développement d’un nouveau moyen de transport pour les médicaments cycliques. Certains macrocycles polaires et biologiquement actifs tels que les nactines ont besoin d’atteindre leur objectif à l’intérieur de la cellule pour jouer leur rôle. La membrane cellulaire est alors un obstacle. Nous avons imaginé tirer profit de notre axe parapluie pour transporter un médicament cyclique (en tant que roue d’un rotaxane parapluie). Les assemblages des rotaxanes parapluie furent accomplis par la méthode de clipage. Le comportement de l’axe et du rotaxane parapluie fut étudié par RMN et fluorimétrie. Le mouvement du parapluie passant d’une conformation fermée à exposée dépendamment du milieu fut observé pour le rotaxane parapluie. Il en fut de même pour les interactions entre le rotaxane parapluie et des vésicules constituées de phospholipides. Finalement, la capacité du rotaxane parapluie à franchir la bicouche lipidique pour transporter la roue à l’intérieur de la vésicule fut démontrée à l’aide de liposomes contenant de la α-chymotrypsine. Cette dernière pu cliver certains liens amide de l’axe parapluie afin de relarguer la roue. / The cell membrane is a phospholipid bilayer barrier that controls the exchanges between the cell and its environment. Its hydrophobic core prevents the entrance of hydrophilic, charged or large polar species that are transported through the bilayer by proteins. In some dysfunctional systems e.g. channelopathies), the balance of ion concentrations between the interior and exterior of the cell is no longer insured and the cell’s health is compromised. That is why the synthesis of synthetic transmembrane transporters is needed. There have been many synthetic anion carriers (especially chloride) developed in this area using different strategies. In this thesis we present our work on a new anion transporter, an umbrella thread. First, we designed and synthesized umbrella threads that showed significant chloride transport activity. These compounds combine two concepts: - the umbrella moiety, made from facial amphiphilic bile acids. The flexibility and large surface of the cholic acids can shield disfavored interactions between hydrophilic and hydrophobic elements that should ease their insertion into the bilayer. - a secondary ammonium recognition site on the thread that can form hydrogen bonds with chloride ions. Furthermore, the thread moiety is able to complex a crown-ether like wheel to form an umbrella pseudo-rotaxane or rotaxane that showed partially inhibited properties for chloride transport. This leads us to the second goal of this thesis, i.e. the development of a new vehicle for drug delivery. Some biologically active polar macrocycles (e.g. nactins) need to reach their target inside the cell to be efficient. The cell membrane also represents an obstacle here. In our work, we imagined using an umbrella thread as the vehicle for the cyclic drug as the wheel of the umbrella rotaxane). The umbrella rotaxanes were successfully assembled by the clipping method. The behavior of both the umbrella thread and umbrella rotaxane was extensively studied by NMR and fluorimetry. The umbrella motion from a shield conformation to an exposed one depending on the environment was observed for the rotaxane. Interactions between the umbrella rotaxane and phospholipid vesicles were also noticed. Finally, its ability to cross the lipid bilayer to deliver the wheel inside the vesicle was shown with α-chymotrypsin-filled liposome assays. This enzyme was able to cleave amide bonds on the umbrella thread to release the wheel.
16

Développement de nouveaux sels Binol-imidazoliums : de la catalyse asymétrique aux applications biologiques

Vidal, Marc 12 1900 (has links)
Le 1,1'-bi-2-naphtol ou Binol, présentant une chiralité axiale, est un ligand très utilisé en catalyse asymétrique. Au cours des vingt dernières années, le Binol a servi de synthon à l’élaboration de très nombreux ligands permettant la catalyse asymétrique de tous types de réactions, allant de l’hydrogénation, à l’alkylation, en passant par diverses réactions péricycliques. Le grand intérêt pour ce ligand vient de sa versatilité et des nombreuses possibilités de fonctionnalisation qu’il offre, permettant d’altérer ses propriétés catalytiques à volonté, aussi bien en modifiant son caractère électronique, qu’en introduisant des facteurs stériques autour du site catalytique. Parallèlement aux développements de la catalyse par des dérivés de Binol, le domaine des liquides ioniques a connu un intérêt croissant ces dernières années. Les liquides ioniques, sels dont le point de fusion est inférieur à 100°C, cumulent de nombreuses qualités convoitées : faible pression de vapeur, stabilité thermique et chimique et fort pouvoir de solvatation. Dû à ces propriétés, les liquides ioniques ont principalement été étudiés dans l’optique de développer une gamme de solvants recyclables. Alors que les propriétés des liquides ioniques sont facilement modulables en fonction de l’anion et du cation choisi, le concept de liquide ionique à tâche spécifique va plus loin et propose d’introduire directement, sur le cation ou l’anion, un groupement conférant une propriété particulière. En suivant cette approche, plusieurs ligands ioniques ont été rapportés, par simple couplage d’un cation organique à un ligand déjà connu. Étonnamment, le Binol a fait l’objet de très peu de travaux pour l’élaboration de ligands ioniques. Dans cette thèse, nous proposons l’étude d’une famille de composés de type Binol-imidazolium dont les unités Binol et imidazolium sont séparées par un espaceur méthylène. Différents homologues ont été synthétisés en variant le nombre d’unités imidazolium et leur position sur le noyau Binol, la longueur de la chaîne alkyle portée par les unités imidazolium et la nature du contre-anion. Après une étude des propriétés thermiques de ces composés, l’utilisation des Binol-imidazoliums en tant que ligands dans une réaction asymétrique d’éthylation d’aldéhydes aromatique a été étudiée en milieu liquide ionique. La réaction a été conduite en solvant liquide ionique dans le but de recycler aussi bien le ligand Binol-imidazolium que le solvant, en fin de réaction. Cette étude nous a permis de démontrer que la sélectivité de ces ligands ioniques dépend grandement de leur structure. En effet, seuls les Binols fonctionnalisés en positions 6 et 6’ permettent une sélectivité de la réaction d’éthylation. Alors que les dérivés de Binol fonctionnalisés en positions 3 et 3’ ne permettent pas une catalyse énantiosélective, il a déjà été rapporté que ces composés avaient la capacité de complexer des anions. D’autre part, il a déjà été rapporté par notre groupe, que les composés comportant des unités imidazolium pouvaient permettre le transport d’anions à travers des bicouches lipidiques en fonction de leur amphiphilie. Ceci nous a amenés à la deuxième partie de cette thèse qui porte sur les propriétés ionophores des Binols fonctionnalisés en positions 3 et 3’ par des unités imidazoliums. Dans un premier temps, nous nous sommes intéressés à l’étude de la relation structure-activité et au mécanisme de transport de ces composés. Le transport d’anions étant un processus clé dans la biologie cellulaire, l’activité biologique des composés présentant une activité ionophore dans des systèmes modèles (liposomes) a été étudiée par la suite. L’activité antibactérienne des nos composés a été testée sur quatre souches de bactéries. Il s’est avéré que les composés Binol-imidazolium sont actifs uniquement sur les bactéries Gram positives. Finalement, la cytotoxicité des composés présentant une activité antibactérienne a été étudiée sur des cellules humaines. / 1,1'-Bi-2-naphthol or Binol, having an axial chirality, is a widely used ligand in asymmetric catalysis. Over the last twenty years, Binol was used as a synthon for the synthesis of numerous ligands for the asymmetric catalysis of various reactions including hydrogenation, alkylation and various pericyclic reactions. The interest in this ligand comes from its versatility and possibilities to modify its electronic character and to introduce steric bulk around the catalytic site. Paralleling interest in the study of Binol derivatives as ligands for asymmetric catalysis has been a growth in research on ionic liquids. Ionic liquids are salts with melting points below 100°C. They combine many interesting properties, such as low vapor pressure, thermal and chemical stability and high solvation power. Due to these properties, ionic liquids have been investigated to develop a range of recyclable solvents. Recently, the concept of task-specific ionic liquids has emerged in which the properties of the ionic liquids are tuned by selecting different cations and anions, to accomplish specific applications. Following this approach, several ionic ligands have been made by coupling known ligands to an ionic liquid cation. Rarely, Binol has been used for this purpose. In this thesis, we study a family of Binol-imidazolium type compounds, in which Binol and imidazolium units are linked by a methylene spacer. Several analogs were synthesized by varying the number of imidazolium units and their position on the Binol moiety, the alkyl chain length on the imidazolium units and the counter-anion. After a study of the thermal properties, the use of Binol-imidazoliums as ligands was described in the asymmetric ethylation of aromatic aldehydes. The reaction was conducted in ionic liquid solvent and both Binol-imidazolium ligand and the solvent were recycled at the end of the reaction. This study demonstrates that the selectivity of these ligands greatly depends on their structure. Indeed, only Binol analogs functionalized at the 6 and 6’ positions were selectivite. Although Binol derivatives functionalized at the 3 and 3' positions did not serve as enantioselective catalysts, they were able to complex anions. Furthermore, it has already been reported by our group, that imidazolium compounds can transport anions across lipid bilayers depending on their amphiphilicity. In the second part of this thesis, we cover the ionophoric properties of Binol derivatives functionalized at the 3 and 3' positions by imidazolium moieties. First, a study will be presented of their structure-property relationships in the transport through liposomes. Thereafter, the transport mechanism will be discussed. Finally, the biological activity of our compounds with ionophore activity was studied, because the anion transport is a key process in cell biology. Their antibacterial activity was tested on four strains of bacteria. Binol-imidazolium compounds exhibited activity on Gram positive bacteria. Their cytotoxicity was also studied on human cells.
17

Mécanismes d'adressage de Pom33, protéine transmembranaire associée aux pores nucléaires chez la levure Saccharomyces cerevisiae levure Saccharomyces cerevisiae / Mechanisms contributing to the targeting of Pom33, a nuclear pore associated transmembrane protein, in the yeast Saccharomyces cerevisiae

Floch, Aurélie 26 September 2014 (has links)
Chez les eucaryotes, les pores nucléaires (NPCs), ancrés dans l’enveloppe nucléaire (EN), régulent les échanges nucléocytoplasmiques. Ces complexes, très conservés, sont composés d’une trentaine de protéines appelées nucléoporines (Nups) présentes en multiples copies au sein de chaque NPC. Chez la levure S. cerevisiae, seules quatre Nups, dont la protéine Pom33, possèdent des domaines transmembranaires. Une étude réalisée en amont de ce projet a permis de caractériser Pom33 et de montrer que le mutant pom33∆ est viable et ne présente pas de défaut apparent de transport nucléocytoplasmique mais se caractérise par un défaut de distribution des NPCs. Pom33 joue également un rôle dans l’assemblage des pores nucléaires au sein de l’EN (biogenèse de novo des NPCs). POM33 appartient à une famille de gènes très conservés. Il possède un paralogue chez S. cerevisiae, PER33, qui code pour une protéine localisée majoritairement au réticulum endoplasmique et minoritairement aux NPCs et qui n’est pas impliquée dans la biogenèse des NPCs. Chez les mammifères, il n’existe qu’un homologue de Pom33/Per33, TMEM33. Dans le cadre de ce doctorat, nous nous sommes demandés quels étaient les déterminants contribuant à l’adressage spécifique de Pom33 au niveau des NPCs et à sa fonction dans la biogenèse de ces structures. La purification de Pom33-ProtA, suivie de spectrométrie de masse, nous a permis d’identifier un nouveau partenaire de Pom33, le facteur d’import Kap123. Des approches in vitro ont montré une interaction directe entre Kap123 et le domaine C-terminal (CTD) de Pom33, qui est perturbée en présence de RanGTP. Par ailleurs, des prédictions in silico ont révélé la présence dans ce domaine CTD de deux hélices amphipathiques, conservées chez l’humain. Des analyses par dichroïsme circulaire et flottaisons ont confirmé la capacité du CTD à s’organiser en hélice en présence de membranes lipidiques et à interagir préférentiellement avec les membranes très courbées. L’expression d’une version mutée de Pom33-CTD, incapable de se lier aux membranes et couplée à la GFP, a révélé la capacité de ce domaine à agir comme un NLS, importé spécifiquement dans le noyau par Kap123. Alors que la délétion du domaine CTD affecte l’adressage de Pom33 aux NPCs et provoque un défaut de distribution des NPCs, la mutation des résidus basiques impliqués dans l’interaction avec Kap123 ou des résidus permettant sa liaison aux membranes lipidiques ne récapitule pas ce phénotype. En revanche, la perte combinée de ces deux déterminants affecte l’adressage de Pom33 aux NPCs et provoque un défaut de distribution des NPCs ainsi qu'une interaction génétique avec le mutant nup133∆, impliqué dans la biogenèse de novo des NPCs. Les résultats obtenus lors de cette étude indiquent donc que l’adressage de Pom33 est un mécanisme actif et multifactoriel, qui met en jeu au moins deux déterminants dans son domaine CTD. Ces données indiquent également un rôle de ce domaine dans la biogenèse de novo des NPCs, qui pourrait néanmoins n’être qu’un effet indirect de son rôle dans l’adressage de Pom33 aux NPCs. Au cours de cette étude, nous avons également mis en évidence d’autres partenaires potentiels de Pom33, en particulier Myo2, une localisation de Pom33 au niveau du bourgeon lors de la division et une interaction génétique entre POM33 et KAP123. Ces observations préliminaires ouvrent de nouvelles pistes de réflexion quant au rôle de Pom33 lors de la division cellulaire. / In eukaryotic cells, nucleocytoplasmic exchanges take place through the nuclear pores complexes (NPCs). These conserved macromolecular assemblies are embedded in the nuclear envelope (NE) and composed of ~30 distinct proteins called nucleoporins (Nups), each presents in multiple copies. In the budding yeast Sacharomyces cerevisiae, there are only four transmembrane Nups, including Pom33. A previous study leds to the characterization of Pom33 and revealed that pom33∆ mutant cells, although viable and without apparent alteration in nucleocytoplasmic transport, display NPCs distribution defect. Pom33 also contributes to the biogenesis of NPCs into the intact NE (de novo biogenesis). Pom33 is highly conserved among species and has a paralogue in S. cerevisiae, Per33, which can associate with NPCs but is mainly localized at the endoplasmic reticulum (ER) and NE. Unlike Pom33, Per33 is not involved in NPCs distribution and biogenesis. In mammalian cells, there is a unique homologue of Pom33/Per33, named TMEM33. In the context of this thesis, we aimed to identify the determinants involved in the specific targeting of Pom33 to NPCs and in its function in pore biogenesis. To characterize these determinants, we first performed affinity-purification experiments followed by mass spectrometry analyses. This identified a novel Pom33 partner, the nuclear import factor Kap123. In vitro experiments revealed a direct interaction between Pom33 C-terminal domain (CTD) and Kap123 that involves positively-charged residues within Pom33-CTD and is altered in the presence of Ran-GTP. Moreover, in silico analyses predicted the presence of two evolutionarily-conserved amphipathic ~-helices within Pom33-CTD. Circular dichroism studies and liposome co-floatation assays confirmed that this CTD domain is able to fold into ~-helices in the presence of liposomes and revealed its preferential binding to highly curved lipid membranes. When expressed in yeast, under conditions abolishing Pom33-CTD membrane association, Pom33-CTD behaves as a Kap123-dependent nuclear localization domain. While deletion of Pom33 C-terminal domain (Pom33-∆CTD-GFP) impairs Pom33 NPC targeting and stability and leads to a NPC distribution phenotype, mutants affecting either Kap123 binding or the amphipathic properties of the ~-helices do not display any detectable defect. However, combined impairment of lipid and Kap123 binding affects Pom33 targeting to NPCs and leads to an altered NPC distribution and a genetic interaction with the deletion of NUP133, a gene coding for a nucleoporin involved in NPCs biogenesis. Together, these results indicate that Pom33 targeting to NPCs is an active and multifactorial process that requires at least two determinants within its CTD. They also suggest a role of Pom33-CTD in the de novo NPCs biogenesis process, which could however only be an indirect consequence of its requirement for Pom33 targeting to NPCs. Our mass spectrometry analysis also identified other partners of Pom33, in particular Myo2, a molecular motor required for the cell cycle-regulated transport of various organelles and proteins and for correct alignment of the spindle during mitosis. Our studies also revealed a specific localization of Pom33 at the bud tip during mitosis and a genetic interaction between POM33 and KAP123. Taken together, these preliminary observations open new perspectives regarding additional functions of Pom33 during cell division.
18

Propriétés anionophores et antibactériennes de sels d’imidazolium et benzimidazolium

Elie, Claude-Rosny 06 1900 (has links)
L’éclosion de bactéries résistantes aux antibiotiques constitue un problème sérieux auquel fait face notre système de santé. L’une des stratégies récemment proposées afin de s’attaquer efficacement et irréversiblement à ces microorganismes multi-résistants est de cibler directement leur membrane via l’action de molécules induisant un débalancement électrolytique de part et d’autre de cette dernière. Parallèlement, ces mêmes agents peuvent aussi avoir des applications dans le traitement de maladies originant des dysfonctions du transport ionique, comme la fibrose kystique. À cet égard, nous présentons dans cette thèse différents sels d’imidazolium et benzimidazolium N,N-disubstitués possédant un potentiel à la fois antimicrobien et ionophore. Notre approche se résume d’abord en un volet mécanistique où une série de modifications structurelles ont été apportées à des sels d’imidazolium et benzimidazolium afin d’observer comment ces changements modulent l’efficacité du transport d’anions dans la membrane artificielle d’un liposome. Nous avons à ce titre pu conclure que l’espèce formée de deux bras aromatiques phényléthynylbenzyl, disposées symétriquement de part et d’autre d’un cation imidazolium, induisait le meilleur transport des anions chlorures, au travers d’une membrane de liposomes, à des concentrations de l’ordre du micromolaire. En outre, les monocations imidazolium et benzimidazolium flanqués d’un contre-anion bis(trifluorométhylsulfonyl)amide ont conduit à une activité ionophore plus rapide. Qui plus est, en s’appuyant sur ces résultats, nous avons présenté le premier exemple, à notre connaissance, d’un transporteur d’anions et de cations, contenant le cation benzimidazolium et capable d’agir aussi bien dans des liposomes que dans des bactéries. Dans un second temps, les meilleurs agents ionophores ont été étudiés dans les membranes plus complexes des bactéries et des globules rouges humains pour vérifier leur effet bactéricide et leur innocuité. Le design de nos transporteurs formés d’un espaceur luthidine a ainsi permis d’obtenir un agent antimicrobien efficace dans des bactéries gram positives et négatives (B. thuringiensis et E. coli) avec une toxicité limitée de l’ordre de 10% sur les globules rouges humains à ses concentrations bactéricides. / The emergence of antibiotic resistant bacteria is a serious problem that our health system faces. One recently proposed strategy to effectively and irreversibly kill these multi-resistant microorganisms is to directly target the integrity of their membrane, using small molecules able to induce an electrolyte imbalance. Moreover, the same molecules may find applications in the treatement od diseases originating from the dysfunction of ion transport, such as cystic fibrosis. Herein we present different imidazolium and benzimidazolium salts N,N-disubstituted with both antimicrobial and ionophoric potential. We first performed mechanistic studies where different structural changes have been made to the imidazolium and benzimidazolium salts to observe how these modifications modulate the efficiency of the anion transport in artificial membrane liposomes. We were able to conclude that the species formed of two aromatic arms phenylethynylbenzyl arranged symmetrically on either side of an imidazolium cation, induced a better transport of chloride anions, through a membrane of liposomes at the micromolar range. In addition, monocations imidazolium and benzimidazolium flanked with an bis(trifluorométhylsulfonyl)amide anion led to faster ionophore activity. Moreover, based on these results we presented the first example, to our knowledge, for an anions and cations benzimidazolium-based transporter, acting as well in liposomes as in bacteria. Secondly, the best anionophore agents were analyzed in more complex bacterias and human red blood cells membranes to study their bactericidal potential and innocuity. Among all the benzimidazolium salts studied, we identified one compound, which presents interesting antibacterial properties as a result of its ability to induce an electrolytic imbalance and to disrupt the integrity and the potential of the bacterial membranes. At the same time this antibacterial agent presented a low toxicity to human cells in bacteriostatic range concentrations.
19

Contribution des cellules souches de glioblastome à l'hétérogénéité tumorale : aspect thérapeutique et développement d'un système d'expression mosaïque fluorescent / Contribution of glioblastoma stem cells to the tumor heterogeneity : therapeutic implication and development of a multicolor tool to track differentiation

Meyer, Lionel 14 October 2016 (has links)
Le glioblastome (GBM) est la tumeur cérébrale primaire la plus agressive comportant une sous-population de cellules souches tumorales (CSG). Elles sont capables d’auto-renouvellement, de prolifération, de différenciation en cellules exprimant les marqueurs neuraux et de trans-différenciation en cellules de types vasculaires. Dans ce contexte, j’ai dérivé et caractérisé plusieurs lignées de CSG à partir de biopsies de patients. Puis j’ai évalué l’impact des peptides thérapeutiques transmembranaires développés au laboratoire, visant les plateformes de récepteurs de neuropiline-1 et de plexine-A1 surexprimées dans les CSG. Les deux peptides diminuent la croissance des CSG in vitro et in vivo. Finalement, j’ai développé un outil génétique fluorescent permettant de suivre le destin des CSG en direct. Basé sur l’expression de 4 rapporteurs fluorescents contrôlés par des promoteurs spécifiques des types cellulaires, il permet d’identifier l’hétérogénéité de ces cellules en différenciation. / The glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and includes a subpopulation of tumoral stem cells (CSG). Those cells can self-renew, proliferate and differentiate by expressing specific neural markers and/or transdifferentiate into vascular-like cells. In this context, my work consisted first to produce and characterize several CSG lines from patient biopsies to constitute a bank of cell lines with different properties. We also evaluated the impact of in house therapeutic transmembrane peptides targeting the neuropilin-1 / plexin-A1 receptor platforms overexpressed in GBM. We thus showed that both targeting peptides decrease the growth of GSC in in vitro and in vivo models. Finally, I developed an inducible mosaic expression system to track the live differentiation of CSG. This system is based on the expression of four different fluorescent reporters controlled by the activity of cell type specific promoters.
20

Axe et rotaxane parapluie : vers de nouveaux transporteurs transmembranaires de chlorures et de médicaments cycliques

Chhun, Christine 01 1900 (has links)
La membrane cellulaire est principalement une bicouche phospholipidique constituant une barrière qui régule les échanges entre la cellule et son environnement. Son intérieur hydrophobe empêche le passage d’espèces hydrophiles, chargées, de grande masse moléculaire et polaires, qui sont généralement transportées par des protéines à travers la bicouche. Dans certains cas de systèmes défectueux (e.g. les canalopathies), l’équilibre des concentrations en ions à l’intérieur et à l’extérieur des cellules est perturbé et les cellules sont compromises. C’est pourquoi le développement de transporteurs transmembranaires synthétiques est nécessaire. De nombreux travaux ont été faits dans le développement de transporteurs synthétiques d’anions (particulièrement du chlorure). Dans cette thèse, nous présentons nos travaux sur un nouveau transporteur d’anion appelé axe parapluie, capable de changer de conformation dépendamment de la polarité de son environnement. Dans un premier temps, nous avons conçu le design, puis synthétisé ces axes parapluie qui montrent une importante activité en tant que transporteur de chlorures. Ces composés réunissent deux concepts : - Le parapluie, constitué d’acides biliaires amphiphiles (une face hydrophile, une face hydrophobe). La flexibilité des articulations combinée à la grande surface des acides choliques permettent d’empêcher les interactions défavorables entre les parties hydrophiles et hydrophobes, ce qui facilite l’insertion dans la bicouche. - Un site ammonium secondaire en tant que site de reconnaissance, capable de former des ponts hydrogène avec des ions chlorure. De plus, l’axe peut complexer une roue de type éther couronne pour former un pseudo-rotaxane ou rotaxane parapluie ce qui résulte en l’inhibition partielle de leurs propriétés de transport. Ceci nous mène au second objectif de cette thèse, le développement d’un nouveau moyen de transport pour les médicaments cycliques. Certains macrocycles polaires et biologiquement actifs tels que les nactines ont besoin d’atteindre leur objectif à l’intérieur de la cellule pour jouer leur rôle. La membrane cellulaire est alors un obstacle. Nous avons imaginé tirer profit de notre axe parapluie pour transporter un médicament cyclique (en tant que roue d’un rotaxane parapluie). Les assemblages des rotaxanes parapluie furent accomplis par la méthode de clipage. Le comportement de l’axe et du rotaxane parapluie fut étudié par RMN et fluorimétrie. Le mouvement du parapluie passant d’une conformation fermée à exposée dépendamment du milieu fut observé pour le rotaxane parapluie. Il en fut de même pour les interactions entre le rotaxane parapluie et des vésicules constituées de phospholipides. Finalement, la capacité du rotaxane parapluie à franchir la bicouche lipidique pour transporter la roue à l’intérieur de la vésicule fut démontrée à l’aide de liposomes contenant de la α-chymotrypsine. Cette dernière pu cliver certains liens amide de l’axe parapluie afin de relarguer la roue. / The cell membrane is a phospholipid bilayer barrier that controls the exchanges between the cell and its environment. Its hydrophobic core prevents the entrance of hydrophilic, charged or large polar species that are transported through the bilayer by proteins. In some dysfunctional systems e.g. channelopathies), the balance of ion concentrations between the interior and exterior of the cell is no longer insured and the cell’s health is compromised. That is why the synthesis of synthetic transmembrane transporters is needed. There have been many synthetic anion carriers (especially chloride) developed in this area using different strategies. In this thesis we present our work on a new anion transporter, an umbrella thread. First, we designed and synthesized umbrella threads that showed significant chloride transport activity. These compounds combine two concepts: - the umbrella moiety, made from facial amphiphilic bile acids. The flexibility and large surface of the cholic acids can shield disfavored interactions between hydrophilic and hydrophobic elements that should ease their insertion into the bilayer. - a secondary ammonium recognition site on the thread that can form hydrogen bonds with chloride ions. Furthermore, the thread moiety is able to complex a crown-ether like wheel to form an umbrella pseudo-rotaxane or rotaxane that showed partially inhibited properties for chloride transport. This leads us to the second goal of this thesis, i.e. the development of a new vehicle for drug delivery. Some biologically active polar macrocycles (e.g. nactins) need to reach their target inside the cell to be efficient. The cell membrane also represents an obstacle here. In our work, we imagined using an umbrella thread as the vehicle for the cyclic drug as the wheel of the umbrella rotaxane). The umbrella rotaxanes were successfully assembled by the clipping method. The behavior of both the umbrella thread and umbrella rotaxane was extensively studied by NMR and fluorimetry. The umbrella motion from a shield conformation to an exposed one depending on the environment was observed for the rotaxane. Interactions between the umbrella rotaxane and phospholipid vesicles were also noticed. Finally, its ability to cross the lipid bilayer to deliver the wheel inside the vesicle was shown with α-chymotrypsin-filled liposome assays. This enzyme was able to cleave amide bonds on the umbrella thread to release the wheel.

Page generated in 0.0917 seconds