Spelling suggestions: "subject:"transport dde lla lumière"" "subject:"transport dde laa lumière""
1 |
Etude du transport incohérent de lumière en milieu anisotrope : application à l'étude des fluides complexes / Incoherent light transport in anisotropic media : application to fluids complexMoumini, Nadjim 16 April 2010 (has links)
Pour construire le lien entre l'organisation structurale des milieux dispersés concentrés et leurs propriétés mécaniques, il est nécessaire de pourvoir identifier leur structure à l'échelle microscopique. En particulier, il faut être capable mesurer la taille des particules ou des amas de particules, leur concentration et les éventuelles anisotropies liées à une déformation ou une orientation (globale ou partielle) dans le cas de particules anisotropes (fibres par exemple) ou déformables (émulsions, globules rouges,...). La difficulté majeure est que ces systèmes composés de particules micrométriques sont généralement opaques à la lumière visible (produits agroalimentaires tels que les laitages, fluides biologiques tels que le sang, matériaux liés au bâtiment tels que les ciments, les argiles ou les peintures,...). Nous avons ainsi mis au point une technique optique basée sur la diffusion multiple de la lumière. Dans le cadre de cette thèse, nous nous intéressons plus particulièrement à la caractérisation des milieux constitués d'objets anisotropes. Sous l'action d'un champ de cisaillement, on observe une orientation privilégiée ou une déformation globale des particules. L'objectif de cette thèse est donc à la fois d'étudier les mécanismes qui sont à l'origine de la déformation et/ou l'orientation des particules et également de mesurer ces anisotropies à l'échelle microscopique. On s'appuie pour mener cette étude sur un dispositif développé au laboratoire basé sur le transport incohérent de lumière couplé à un rhéomètre. Il s'agit d'un dispositif constitué d'une source laser focalisée à la surface d'un échantillon et d'une caméra CCD permettant l'acquisition d'une image rétrodiffusée loin du point d'impacte du laser. Parallèlement, une base de données de simulation de Monte Carlo est en cours de réalisation permettant par analyse des images rétrodiffusées anisotropes, de remonter à l'information sur l'anisotropie réelle des particules (facteur de forme) leur champ d'orientation (paramètre d'ordre). En effet, en confrontant les données expérimentales aux données numériques, nous sommes en mesure de déterminer le taux d'orientation moyen de particules très anisotropes ou de caractériser la déformation des particules. Une application à la déformation des rouges sous cisaillement pour du sang en concentration physiologique (40 à 50% en volume) sera présentée. D'autres applications, notamment à l'endommagement des plastiques et à l'orientation de suspensions de fibres seront discutées / To build the link between the structural organization between concentrated dispersions and their mechanical properties, you have to be able to identify their microscopic structure. In particular, for anisotropic particles (fibbers for example) or deformable particles (emulsions, red blood cells...), the knowledge of the particle size, the concentration, the deformation or the orientation of particles (partial or global) are very important. Most of concentrated dispersions are generally opaque to visible light (biological fluids as blood, clays...). An optical diffusing method based on multiple diffusion light has been developed in the laboratory to study this kind of materials. In this thesis, we are interested in the general problem of characterizing concentrated dispersions with anisotropic objects. Under shear rate, a preferential orientation or a global deformation of particles has been observed. The objective of this thesis is to study the mechanisms which involve deformation and/or orientation of anisotropic particles. An experimental device based on the incoherent light transport has been developed at the laboratory in order to determine the orientation or the deformation. The experimental device is composed of a focused laser diode and a CCD camera to acquire the backscattered images. A data base of Monte Carlo simulation has been created in order to get the form factor or the orientation of particles by analyse of anisotropic backscattered images. By comparing the numerical data with the experimental data, we are able to determine the average rate of orientated particles. Thanks to this optical diffusing method, the deformation of red blood cells in physiological concentration (40 to 50% volume fraction) and the orientation of fibbers dispersion has been study
|
2 |
Une approche fréquentielle pratique pour l'échantillonnage adaptatif en espace imageDubouchet, Renaud Adrien 10 1900 (has links)
En synthèse d'images réalistes, l'intensité finale d'un pixel est calculée en estimant une intégrale de rendu multi-dimensionnelle. Une large portion de la recherche menée dans ce domaine cherche à trouver de nouvelles techniques afin de réduire le coût de calcul du rendu tout en préservant la fidelité et l'exactitude des images résultantes. En tentant de réduire les coûts de calcul afin d'approcher le rendu en temps réel, certains effets réalistes complexes sont souvent laissés de côté ou remplacés par des astuces ingénieuses mais mathématiquement incorrectes.
Afin d'accélerer le rendu, plusieurs avenues de travail ont soit adressé directement le calcul de pixels individuels en améliorant les routines d'intégration numérique sous-jacentes; ou ont cherché à amortir le coût par région d'image en utilisant des méthodes adaptatives basées sur des modèles prédictifs du transport de la lumière.
L'objectif de ce mémoire, et de l'article résultant, est de se baser sur une méthode de ce dernier type[Durand2005], et de faire progresser la recherche dans le domaine du rendu réaliste adaptatif rapide utilisant une analyse du transport de la lumière basée sur la théorie de Fourier afin de guider et prioriser le lancer de rayons. Nous proposons une approche d'échantillonnage et de reconstruction adaptative pour le rendu de scènes animées illuminées par cartes d'environnement, permettant la reconstruction d'effets tels que les ombres et les réflexions de tous les niveaux fréquentiels, tout en préservant la cohérence temporelle. / In realistic image synthesis, a pixel's final intensity is computed by estimating a multi-dimensional shading integral. A large part of the research in this domain is thus aimed at finding new techniques to reduce the computational cost of rendering while preserving the fidelity and correctness of the resulting images. When trying to reduce rendering costs to approach real-time computation, complex realistic effects are often left aside or replaced by clever but mathematically incorrect tricks.
To accelerate rendering, previous directions of work have either addressed the computation of individual pixels by improving the underlying numerical integration routines; or have sought to amortize the computation across regions of an image using adaptive methods based on predictive models of light transport.
This thesis' - and resulting paper's - objective is to build upon the latter of the aforementioned classes of methods[Durand2005], and foray into fast adaptive rendering techniques using frequency-based light transport analysis to efficiently guide and prioritize ray tracing. We thus propose an adaptive sampling and reconstruction approach to render animated scenes lit by environment lighting and faithfully reconstruct all-frequency shading effects such as shadows and reflections while preserving temporal coherency.
|
3 |
Efficient frequency-space methods for light transport cachingDubouchet, Renaud Adrien 04 1900 (has links)
Le transport de la lumière permet de simuler physiquement le movement de photons dans
un environnement virtuel. En rendu d’images, la lumière se propage une dernière fois vers
un capteur virtuel la transformant en une image, affichée pour un observateur. Durant
ce voyage la lumière peut être analysée fréquentiellement pour comprendre ses variations
spatiales et angulaires afin d’accélerer le rendu. La génération d’images réalistes a subit de
grandes avancées au cours des dernières années, réduisant l’écart entre simulation et réalité.
Cependant les contraintes en terme de performance et de mémoire empêchent toujours aux
applications interactives et en temps-réel de bénéficier des effets de rendu les plus complexes.
Pour cela, les moteurs de rendu professionels modernes dépendent toujours de méthodes de
pré-calculation de données et de procédures asynchrones de traitement.
Cette thèse par article présente deux projets traitant du transport de la lumière à travers
une perspective fréquentielle dans le contexte d’applications interactives et en temps-réel.
Nous proposons premièrement une méthode pour réutiliser efficacement le calcul préalable de
chemins de lumière par méthode Monte Carlo pour des séquences animées. Nous prenons
avantage de l’analyse fréquentielle du transport de la lumière réalisée dans des travaux
antérieurs, étendue ici à l’échantillonement et reconstruction spatial, angulaire et temporel.
Notre seconde méthode pré-calcule le transport de la lumière à travers les volumes participatifs
jusqu’aux surfaces, que nous encodons comme réponse impulsive. Cet opérateur compacte et
efficace nous permet d’accélerer le transport à travers des volumes jusqu’aux surfaces dans le
contexte de diffusion multiple dans des conditions arbitraires de média participatifs. / Light transport is the method of physically simulating the movement of photons in an
environment. Applied to rendering, light travels one last time to a virtual sensor that
captures it as an image displayed to an observer. As it travels, light is analysable frequentially
to understand how it varies spatially and angularly to accelerate rendering. Recent advances in
physically-based realistic rendering have been closing the gap between reality and simulation
but the memory and performance costs still preclude the inclusion of the more computationally
expensive effects in interactive and real-time applications. Because of this, modern production
renderers rely on the ahead-of-time precomputation of data for efficient reuse in the form of
offline computational processes and asynchronously distributed procedures.
This thesis by publication investigates with two papers the simulation of light transport
from a frequency-based perspective for interactive and precomputed real-time applications.
We first propose a method for efficiently reusing light path computations over time in
interactive Monte Carlo path-traced animation sequences. We leverage to this end the
frequency analysis of light transport introduced in previous works, extended to spatial,
angular and temporal sampling and reconstruction. Our second method investigates the
precomputation of participating volume-to-surface light transport as impulse responses, a
compact and efficient frequency-based transport operator. In turn, these operators accelerate
by orders of magnitude the computation of multi-scattered volume-to-surface transport in
arbitrary, potentially heterogeneous media conditions.
|
4 |
Extended distribution effects for realistic appearance and light transportGuertin-Renaud, Jean-Philippe 05 1900 (has links)
L'imagerie moderne générée par ordinateur cherche constamment à être de plus en plus représentative de la réalité physique tout autour de nous, et un de ces phénomènes clés est la notion d'effets de distribution. Les effets de distribution sont une catégorie de comportements du transport de la lumière caractérisés par leur nature distribuée selon une ou plusieurs dimension(s) donnée(s). Par exemple, le flou de mouvement est un effet de distribution dans le temps, alors que la profondeur de champ introduit le diaphragme de la caméra, ajoutant ainsi deux dimensions. Ces effets sont communs dans les films et la réalité, les rendant donc désirables à reproduire.
Dans cette thèse par articles, nous présentons quatre articles qui utilisent, étendent ou s'inspirent des effets de distribution. Premièrement, nous proposons une technique novatrice pour faire le rendu de flou de mouvement non-linéaire pour des applications en temps réel tout en conservant des caractéristiques clés d'efficacité et de mise à l'échelle. Nous tirons avantage des courbes de Bézier pour concevoir une approximation de mouvement non-linéaire depuis seulement quelques images clés et rastérisons une géométrie synthétisée pour reproduire le mouvement. Deuxièmement, nous présentons un algorithme qui fait le rendu de matériaux scintillants à haute fréquence illuminés par de grandes cartes environnementales. En utilisant une combinaison d'un système d'histogrammes de mi-vecteurs compact et des harmoniques sphériques multi échelle, nous pouvons efficacement représenter des normales de surface denses et rendre leurs interactions avec des sources de lumière filtrées de grandes dimensions. Troisièmement, nous introduisons une nouvelle méthode pour faire le rendu de dispersion sous la surface en tirant avantage de l'analyse fréquentielle et du parcours d'un arbre dual. En calculant le transport de la lumière sous la surface en espace image, nous pouvons rapidement analyser la fréquence du signal et déterminer des bandes passantes efficaces que nous pouvons alors utiliser pour limiter notre traversée dans un arbre dual d'ombrage et d'illumination. Finalement, nous démontrons un algorithme novateur d'illumination globale diffuse en temps réel qui utilise des sondes d'irradiance dynamiques. Grâce à des mises à jour efficaces de distribution de radiance, nous pouvons mettre à jour des sondes d'irradiance pendant l'exécution, prenant en compte les objets dynamiques et une illumination changeante, et nous le combinons avec une requête d'irradiance filtrée plus robuste, rendant une grille de sondes d'irradiance dense traitable en temps réel avec des artefacts minimes. / Modern computer generated imagery strives to be ever more faithful to the physical reality around us, and one such key physical phenomenon is the notion of distribution effects. Distribution effects are a category of light transport behaviors characterized by their distributed nature across some given dimension(s). For instance, motion blur is a distribution effect across time, while depth of field introduces a physical aperture for the camera, thus adding two more dimensions. These effects are commonplace in film and real life, thus making them desirable to reproduce.
In this manuscript-based thesis, we present four papers which leverage, extend or inspire themselves from distribution effects. First, we propose a novel technique to render non-linear motion blur for real-time applications while conserving important scalability and efficiency characteristics. We leverage Bézier curves to approximate non-linear motion from just a few keyframes and rasterize synthesized geometry to replicate motion. Second, we present an algorithm to render glinty high-frequency materials illuminated by large environment maps. Using a combination of a compact half-vector histogram scheme and multiscale spherical harmonics, we can efficiently represent dense surface normals and render their interaction with large, filtered light sources. Third, we introduce a new method for rendering subsurface scattering by taking advantage of frequency analysis and dual-tree traversal. Computing screen-space subsurface light transport, we can quickly analyze signal frequency and determine efficient bandwidths which we then use to limit our traversal through a shading/illumination dual-tree. Finally, we show a novel real-time diffuse global illumination scheme using dynamically updated irradiance probes. Thanks to efficient spherical radiance distribution updates, we can update irradiance probes at runtime, taking into consideration dynamic objects and changing lighting, and combine it with a more robust filtered irradiance query, making dense irradiance probe grids tractable in real-time with minimal artifacts.
|
5 |
Simulation du canal optique sans fil. Application aux télécommunications optique sans fil / Optical wireless channel simulation. Applications to optical wireless communicationsBehlouli, Abdeslam 07 December 2016 (has links)
Le contexte de cette thèse est celui des communications optiques sans fil pour des applications en environnements indoor. Pour discuter des performances d'une liaison optique sans fil, il est nécessaire d'établir une étude caractéristique du comportement du canal de propagation. Cette étude passe par l'étape de la mesure ou de l'estimation par la simulation de la réponse impulsionnelle. Après avoir décrit la composition d'une liaison et passé en revue les méthodes de simulation existantes, nous présentons nos algorithmes de simulation dans des environnements réalistes, en nous intéressant à leurs performances en termes de précision et de temps de calcul. Ces méthodes sont basées sur la résolution des équations de transport de la lumière par du lancer de rayons associées aux méthodes d'intégration stochastique de Monte Carlo. La version classique de ces méthodes est à la base de trois algorithmes de simulations proposés. En utilisant une optimisation par des chaînes de Markov, nous présentons ensuite deux autres algorithmes. Un bilan des performances de ces algorithmes est établi dans des scénarios mono et multi-antennes. Finalement, nous appliquons nos algorithmes pour caractériser l'impact de l'environnement de simulation sur les performances d'une liaison de communication par lumière visible, à savoir les modèles d'émetteurs, les matériaux des surfaces, l'obstruction du corps de l'utilisateur et sa mobilité, et la géométrie de la scène de simulation. / The context of this PhD thesis falls within the scope of optical wireless communications for applications in indoor environments. To discuss the performance of an optical wireless link, it is necessary to establish a characteristic study of the behavior of the optical wave propagation channel. This study can be realized by measurement or by the simulation of the channel impulse response. After describing the composition of an optical wireless link and reviewing existing simulation methods, we present our new simulation algorithms channel in realistic environments by focusing on their performances in terms of accuracy and their complexity in terms of computation time. These methods are based on solving the light transport equations by ray-tracing techniques associated with stochastic Monte Carlo integration methods. The classical version of these methods is the basis of three proposed simulation algorithms. By applying an optimization using Markov Chain, we present two new algorithms. A performance assessment of our simulation algorithms is established in mono and multi-antenna scenarios of our simulation algorithms. Finally, we present the application of these algorithms for characterizing the impact of the simulation environment on the performances of a visible light communication link. We particularly focus on the transmitter models, surface coating materials, obstruction of the user's body and its mobility, and the geometry of the simulation scene.
|
Page generated in 0.0994 seconds