• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification par complémentation d'un gène qui restaure la sécrétion de l'invertase chez Saccharomyces cerevisiae W303-1b

Huard, Sylvain 03 1900 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal. / Chez les cellules eucaryotes, la biosynthèse des protéines est essentielle à la vie. Pour accomplir leurs fonctions biologiques, les protéines doivent être acheminées au bon endroit dans la cellule, notamment par la voie de sécrétion. Cette voie de transport est organisée en diverses structures membranaires distinctes. La porte d'entrée des protéines sécrétées et des protéines membranaires dans la voie de sécrétion est le réticulum endoplasmique. À cet endroit, les protéines sont repliées correctement, glycosylées et forment des ponts disulfures. Par la suite, la plupart d'entre elles sont acheminées à l'appareil de Golgi par des vésicules de transport. Dans ce compartiment intracellulaire, les groupements glycosyls des glycoprotéines sont alors modifiés. Finalement, certaines protéines sont transportées à la vacuole ou à la membrane plasmique par une autre série de vésicules de transport. Chez Saccharomyces cerevisiae, la voie de sécrétion des protéines est très semblable à celle des cellules de mammifères dans sa capacité de replier les protéines, de les glycosyler et de les sécréter. Ces propriétés dépendent du bon fonctionnement de la voie de sécrétion. Nos travaux ont consisté à étudier le transport de l'invertase vers l'espace périplasmique chez Saccharomyces cerevisiae W303-lb. Des études antérieures ont démontré que W303-lb manifeste à 37 °C un ralentissement de la sécrétion de l'invertase dans l'espace périplasmique comparativement à SEY6210. Notre hypothèse de travail vise sur l'identification, par complémentation génétique, d'un gène défectueux responsable du phénotype observé chez W303-1 b. De plus, ce défaut de sécrétion est corrigé par la délétion du gène SLA 1 chez W303-1 b. Sial p est une protéine liant l'actine qui semble importante dans le transport de certaines protéines entre le réticulum endoplasmique et l'appareil de Golgi. Nous avons montré qu'un fragment d'ADN génomique du chromosome IX restaure la sécrétion de l'invertase chez W303-1 b. Ce fragment contient trois gènes (ECM37, YILJ 45C et TID3) où seul le gène YILJ 45C possède un cadre de lecture ouverte (ORF) entier. Finalement, plusieurs hypothèses ont été émises sur les effets possibles de ces gènes sur la sécrétion de l'invertase, ce qui permettra éventuellement d'élaborer de nouvelles hypothèses concernant l'organisation du système de sécrétion chez Saccharomyces cerevisiae et les liens moléculaires qui peuvent exister entre le cytosquelette et la machinerie protéique régulant le transport des protéines.
2

Découverte de nouveaux complexes protéiques impliqués dans la synthèse et le transport intracellulaire des récepteurs couplés aux protéines G

Parent, Audrey January 2010 (has links)
Les récepteurs couplés aux protéines G (RCPGs) constituent la plus grande famille de récepteurs membranaires et sont impliqués dans le contrôle de la majorité des processus physiologiques. Dans le modèle classique, la signalisation par les RCPGs se résumait à l'activation de protéines G hétérotrimériques capables de moduler l'activité d'effecteurs, qui, à leur tour, contrôlent la concentration intracellulaire de seconds messagers tels que l'AMPc ou le calcium. Cette vision classique de la signalisation s'est par contre complexifiée au fil des années et l'on sait maintenant que les RCPGs interagissent avec une multitude d'autres protéines afin de transmettre de façon spécifique les signaux extracellulaires. Ainsi, pour bien comprendre comment est régulé un RCPG, il devient primordial de connaître les protéines interagissant avec celui-ci. Nous avons donc entrepris d'identifier de nouveaux partenaires d'interaction pour les récepteurs DP (récepteur de la prostaglandine D[indice inférieur 2]), TP[bêta] (récepteur du thromboxane A[indice inférieur 2]) et [bêta][indice inférieur 2]-adrénergique, puis, de déterminer le rôle de ces complexes protéiques dans la fonction des récepteurs. Lors d'un criblage par double-hybride visant à identifier de nouveaux partenaires d'interaction pour DP, nous avons identifié la protéine ankyrin repeat domain-containing protein 13C (ANKRD13C), une protéine n'ayant pas encore été caractérisée jusqu'à maintenant. Des études de localisation ont montré qu'ANKRD13C est associée à la membrane du réticulum endoplasmique (RE), où elle interagit avec DP. Cette interaction facilite d'abord la biogenèse du récepteur en ralentissant la dégradation des récepteurs nouvellement synthétisés. Elle régule aussi le transport de DP vers la membrane plasmique en induisant la rétention dans le RE des formes immatures du récepteur. Elle facilite finalement la dégradation par le protéasome des formes de récepteurs retenues dans le RE. Ces expériences suggèrent donc un rôle de chaperonne pour ANKRD13C dans la biogenèse du récepteur DP. La protéine adaptatrice RACK1 (Receptor for Activated C-Kinase 1) a ensuite été identifiée comme nouveau partenaire d'interaction pour l'isoforme [bêta] du récepteur du thromboxane A[indice inférieur 2] (TP[bêta]).Les résultats présentés dans cette étude montrent que les deux protéines interagissent directement et qu'elles forment un complexe au niveau du RE. L'interaction entre TP[bêta] et RACK1 s'est d'ailleurs avérée essentielle pour que le récepteur puisse être exporté du RE vers la membrane plasmique. Ces travaux ont donc révélé un rôle majeur de RACK1 dans la fonction de TP[bêta], plus précisément au niveau de son transport vers la surface cellulaire. Finalement, une nouvelle interaction entre le récepteur [bêta][indice inférieur 2]-adrénergique ([bêta][indice inférieur2]-AR) et la petite protéine G Rab11 a été caractérisée.Les expériences réalisées démontrent que les deux protéines s'associent en cellules via une interaction directe. Une construction du [bêta][indice inférieur 2]-AR où les sites d'interaction avec Rab11 sont mutés a été générée. La mise en évidence d'un défaut de recyclage de ce mutant suite à une stimulation avec un agoniste spécifique a permis d'établir que l'interaction directe avec Rab11 est essentielle pour que le [bêta][indice inférieur 2]-AR puisse recycler de façon adéquate.Les résultats présentés dans cette thèse illustrent le rôle joué par trois nouveaux complexes protéiques dans la synthèse, l'export et le recyclage de RCPGs. L'identification et la caractérisation de ces nouvelles interactions permettra de mieux comprendre comment sont régulés les récepteurs DP, TP[bêta] et [bêta][indice inférieur 2]-adrénergique, et permettra éventuellement d'améliorer les connaissances quant à la régulation de l'ensemble des récepteurs couplés aux protéines G.
3

Caractérisation de la propriété de la protéine ZEBRA du virus Epstein-Barr à pénétrer dans les cellules

Rothe, Romy 02 June 2010 (has links) (PDF)
Il a été récemment démontré que l'activateur de transcription ZEBRA du virus Epstein-Barr contenant un motif "basic-leucine zipper (bZIP)" traverse la membrane externe des cellules vivantes et s'accumule dans le noyau des lymphocytes. Durant mon travail de thèse, j'ai étudié la possibilité d'utiliser ZEBRA comme protéine de transport afin de faciliter la transduction de protéines cargo. L'analyse de différentes formes tronquées de ZEBRA a permis de mettre en évidence que le domaine minimal (MD) nécessaire à l'internalisation inclut les résidus 178-220. Le MD a permis de transporter de manière efficace des protéines rapporteur comme la EGFP et la -galactosidase dans plusieurs lignées cellulaires normales et tumorales. La fonction des protéines cargo internalisées a été confirmée par l'activité -galactosidase dans les cellules transduites, et aucune toxicité cellulaire associée au MD n'a été détectée. La translocation du MD à travers la membrane cellulaire nécessite la liaison aux héparanes sulfates protéoglycans associés à la surface de la cellule comme cela a été démontré par la forte inhibition du transport de protéines en présence d'héparine. En outre, l'internalisation est également bloquée à basse température (4 °C). De plus, une réduction de seulement 25 % du transport de protéines cargo dans des cellules avec des stocks d'ATP épuisés démontre que l'internalisation est un processus indépendant de l'ATP. Les inhibiteurs classiques d'endocytose n'ont aucun effet significatif sur le transport de MD-EGFP. Seul le methyl--cyclodextrin inhibe de 40 % le transport de MD-EGFP, indiquant l'implication d'une voie d'endocytose médiée par les radeaux lipidiques. Ces résultats suggèrent que le transport de la protéine rapporteur ZEBRA-MD se produit principalement par translocation directe à travers la membrane cellulaire et non par endocytose. La distribution tissulaire d'EGFP ou de la β-galactosidase couplés ou non avec ZEBRA-MD a été étudiée après injection dans la souris. Seules les protéines de fusion avec ZEBRA-MD ont pu être révélées dans les cellules de différents tissus. De plus, la séquence de translocation de ZEBRA-MD a été fusionnée avec la protéine anti-tumorale IL-24/MDA-7. La mort cellulaire induite par l'internalisation de ZEBRA-MD-IL-24/MDA-7 a été mise en évidence par le clivage des caspases de la voie d'apoptose aussi dans des cellules normales que dans des cellules tumorales du sein. En conclusion, le mécanisme d'internalisation de ZEBRA-MD est approprié pour un transport efficace de protéines biologiquement actives.

Page generated in 0.2571 seconds