Spelling suggestions: "subject:"transport nucleocytoplasmic"" "subject:"transport cytoplasmique""
1 |
Caractérisation du transport nucléocytoplasmique de la protéine Staufen chez les mammifèresMartel, Catherine January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Etude de l'interaction entre la protéine humaine Importin beta et la protéine du VIH-1 Rev / Nucleocytoplasmic transport of HIVSpittler, Didier 29 September 2015 (has links)
La protéine Rev du VIH-1 est une petite protéine qui permet l'export nucléaire des transcrits viraux partiellement ou non épissés. L'import nucléaire de Rev est réalisé par Importin β (Impβ), un facteur de transport cellulaire qui reconnaît le signal de localisation nucléaire (NLS) riche en arginine présent sur Rev. Le but de cette thèse est de déterminer la structure tridimensionnelle du complexe formé par Impβ et Rev. Après des essais de cristallogenèse infructueux, nous avons sondé la structure du complexe Impβ/Rev en utilisant différentes approches biochimiques, biophysiques et computationnelles. Les résultats suggèrent un nombre limité de modèles tridimensionnels du complexe Impβ/Rev. Ces travaux augmentent notre compréhension de la façon dont Impβ reconnaît Rev et devraient dans l'avenir, faciliter la détermination de la structure de ce complexe à haute résolution. / HIV-1 Rev is a small protein which mediates the nuclear export of unspliced and partially spliced viral transcripts. The nuclear import of Rev is mediated by the host cell protein Importin β (Impβ), a transport factor that recognizes the arginine- rich nuclear localization signal (NLS) present on Rev. The goal of this project is to determine the three-dimensional structure of the complex formed by Impβ and Rev. Because attempts to crystallize this complex were unsuccessful, we sought structural information using a range of biochemical, biophysical and computational approaches. The results suggest a limited number of hypothetical configurations for the Impβ/Rev complex, which can be specifically verified with additional experiments. The work described in this thesis increases our understanding of how Impβ recognizes Rev and should facilitate future efforts at determining the high-resolution structure of this complex.
|
3 |
Étude de la fonction de la protéine RPAP4 et de son association avec l’ARN polymérase IILacombe, Andrée-Anne 11 1900 (has links)
L’ARN polymérase II (ARNPII), l’enzyme responsable de la transcription des ARN messagers, procède au décodage du génome des organismes vivants. Cette fonction requiert l’action concertée de plusieurs protéines, les facteurs généraux de la transcription, par exemple, formant un réseau d’interactions protéine-protéine, plusieurs étant impliquées dans la régulation de l’ARNPII à différents niveaux. La régulation de la transcription a été largement étudiée durant les quatre dernières décennies. Néanmoins, nous en connaissons peu sur les mécanismes qui régulent l’ARNPII avant ou après la transcription.
Dans la première partie de cette thèse, nous poursuivons la caractérisation du réseau d’interactions de l’ARNPII dans la fraction soluble de la cellule humaine, travail qui a débuté précédemment dans notre laboratoire. Ce réseau, développé à partir de la méthode de la purification d’affinité en tandem couplée à la spectrométrie de masse (AP-MS) et à des méthodes d’analyses bioinformatiques, nous amène une foule d’informations concernant la régulation de l’ARNPII avant et après son interaction avec la chromatine. Nous y identifions des protéines qui pourraient participer à l’assemblage de l’ARNPII telles des chaperonnes et les protéines du complexe R2TP/prefoldin-like ainsi que des protéines impliquées dans le transport nucléocytoplasmique. Au centre de ce réseau se trouvent RPAP4, une GTPase qui semble se positionner à l’interface entre ces protéines régulatrices et l’ARNPII. Nous avons donc entamé l’étude la fonction de RPAP4, ce qui nous a menés à la conclusion que RPAP4 est essentielle à l’import nucléaire de l’ARNPII au noyau, où elle exerce sa fonction. Nous avons également montré que les motifs G et GPN sont essentiels à la fonction de RPAP4. Le traitement des cellules avec le bénomyl nous montre aussi que la fonction de RPAP4 et l’import nucléaire de l’ARNPII requièrent l’action des microtubules.
La deuxième partie de la thèse s’intéresse à une autre protéine positionnée au centre du réseau, RPAP2. Cette dernière partage plusieurs interactions avec RPAP4. Elle est aussi essentielle à la localisation nucléaire de l’ARNPII et interagit directement avec celle-ci. RPAP4 et RPAP2 étant toutes deux des protéines cytoplasmiques qui font la navette entre le noyau et le cytoplasme, nous présentons des évidences que RPAP4 est impliquée dans l’export nucléaire de RPAP2 pour permettre à celle-ci d’être disponible dans le cytoplasme pour l’import de l’ARNPII dans le noyau.
Dans la troisième partie de la thèse, nous étudions plus en profondeur les modifications post-traductionnelles de RPAP4, ce qui nous aide à mieux comprendre sa propre régulation et sa fonction auprès de l’ARNPII. RPAP4 est phosphorylée en mitose par la MAP kinase ERK5. Cette phosphorylation favorise l’interaction entre RPAP4 et RPAP2, ce qui empêche RPAP2 d’interagir avec l’ARNPII pendant la mitose, prévenant du même coup, son interaction avec la chromatine pendant cette phase du cycle cellulaire où la transcription est presque inexistante. / RNA polymerase II, the enzyme responsible for transcription of messenger RNA, decodes the genome of living organisms. This function requires the concerted action of several proteins, including transcription factors, which form a protein-protein interaction network. Many of them are implicated in the regulation of RNAPII transcription. Although regulation of transcription has been largely studied during the last four decades, little is known about mechanisms that regulate RNAPII prior and after the transcription reaction.
In the first part of this thesis, we continue the characterization of the RNAPII interaction network of RNAPII in the soluble fraction of the human cell. This network, developed using tandem affinity purification method coupled with mass spectrometry (AP-MS) and bioinformatic analysis, provides a wealth of information about RNAPII regulation prior and after its interaction with chromatin for transcription. We identified proteins that can be involved in RNAPII assembly, including chaperones and the cochaperone complex R2TP prefoldin-like, and proteins involved in nucleocytoplasmic shuttling. RPAP4 is a GTPase that occupies a central position in this network being at the interface between these regulatory proteins and RNAPII. We therefore started to study the function of RPAP4, which lead us to conclude that RPAP4 is essential for RNAPII nuclear import. We also report that G domains and the GPN motif are essential for RPAP4 function. Treatment of the cells with benomyl suggests that microtubules are required for RPAP4 function and RNAPII nuclear import.
The second part concerns another protein found in the network that is also centrally positioned in the network, called RPAP2. RPAP2 shares many interactions with RPAP4. This protein is also essential for the nuclear import of RNAPII as it interacts directly with it. RPAP4 and RPAP2 being cytoplasmic proteins that shuttle between the cytoplasm and the nucleus, we show evidences that RPAP4 is implicated in RPAP2 nuclear export to make it available for RNAPII nuclear import.
In the third part, we study RPAP4 post-translational modifications, which help us to understand its own regulation and its function with RNAPII. RPAP4 is phosphorylated in mitosis by the MAP kinase ERK5. This phosphorylation promotes the interaction between RPAP4 and RPAP2. It prevents RPAP2 and RNAPII interaction and RNAPII chromatin localization in mitosis where transcription is mostly nonexistent.
|
4 |
Le rôle des importines dans le ciblage à la membrane nucléaire interne de la glycoprotéine M de l'herpès simplex de type 1Vandal, Catherine 11 1900 (has links)
La glycoprotéine M (gM) est une protéine virale transmembranaire qui est conservée dans la famille des Herpesviridae. Malgré son rôle non essentiel in vitro chez la plupart des virus de la sous-famille des Alphaherpesvirinae, dont l’herpès simplex de type 1 (VHS-1), gM est impliquée à plusieurs étapes de leur cycle viral et sa déplétion entraine une diminution de la production virale. Pour effectuer ses diverses fonctions, gM est ciblée dynamiquement à plusieurs compartiments cellulaires au cours de l’infection, dont le noyau, le réseau trans-Golgi et la membrane plasmique. Chez le VHS-1, gM est la première glycoprotéine détectée aux membranes nucléaires, et ce, dès 4 heures après le début de l’infection. Des expériences effectuées précédemment dans notre laboratoire ont démontré que la localisation de gM au noyau à 4hpi est un processus actif, viral-dépendant et spécifique qui succède sa traduction au réticulum endoplasmique. Or, sa fonction au noyau n’est toujours pas élucidée, ni le mécanisme lui permettant d’atteindre ce compartiment tôt durant l’infection. D’ailleurs, aucun des partenaires d’interaction connus de gM n’a été identifié comme participant à ce ciblage, soulevant des questions quant au mécanisme utilisé par la glycoprotéine virale pour atteindre le noyau. Notre hypothèse est que gM emprunte le transport nucléocytoplasmique de la cellule pour être activement ciblée à la membrane nucléaire interne par l’intermédiaire des importines.
Afin d’étudier le rôle des importines dans la localisation de gM tôt dans l’infection, chaque importine a été déplétée par ARN interférent dans des cellules 143B. À la suite d’une infection de 4h, la localisation de gM a été déterminée par microscopie confocale suivie d’analyses qualitatives en 2D et en 3D. Les résultats obtenus suggèrent que les importines ne participent pas significativement au ciblage de gM aux membranes nucléaires à cette étape de l’infection. Ces observations ouvrent la porte à d’autres mécanismes de transport qui devront être étudiés afin de mieux comprendre le ciblage de gM à ce compartiment et, éventuellement, y déterminer son ou ses rôles dans le cycle viral de l’herpès. / Glycoprotein M (gM) is a viral transmembrane protein that is conserved in the Herpesviridae family. Despite its non-essential role in vitro in most viruses of the Alphaherpesvirinae subfamily, including herpes simplex virus type 1 (HSV-1), gM is involved at several stages of their viral cycle and its depletion leads to a decrease in viral production. To perform its various functions, gM is dynamically targeted to several cellular compartments during infection, including the nucleus, the trans-Golgi Network and the plasma membrane. In HSV-1, gM is the first glycoprotein detected at nuclear membranes as early as 4 hours after the onset of infection. Previous experiments conducted in our laboratory have shown that the localization of gM to the nucleus at 4hpi is an active, viral-dependent and specific process that follows its translation at the endoplasmic reticulum. However, its function at the nucleus is still not elucidated, nor is the mechanism by which it reaches this compartment early during infection. Moreover, none of gM's known interacting partners have been identified as participants in this targeting, raising questions about the mechanism used by the viral glycoprotein. Our hypothesis is that gM takes advantage of the nucleocytoplasmic transport of the cell to be actively targeted to the inner nuclear membrane via importins.
In order to study the role of the importins in the localization of gM early in the infection, each importin was depleted by interfering RNA in 143B cells. After a 4-hour infection, gM localization was determined by confocal microscopy followed by 2D and 3D qualitative analysis. The results obtained from these experiments suggest that importins do not significantly participate in the targeting of gM to nuclear membranes at 4hpi. These observations open the door to other transport mechanisms that will need to be studied in order to better understand the targeting of gM to this compartment and to eventually determine its role(s) in the herpes viral cycle.
|
5 |
The nuclear pore complex and its transporters : from virus-host interactors to subverting the innate antiviral immunityGagné, Bridget 05 1900 (has links)
Les virus ont besoin d’interagir avec des facteurs cellulaires pour se répliquer et se propager dans les cellules d’hôtes. Une étude de l'interactome des protéines du virus d'hépatite C (VHC) par Germain et al. (2014) a permis d'élucider de nouvelles interactions virus-hôte. L'étude a également démontré que la majorité des facteurs de l'hôte n'avaient pas d'effet sur la réplication du virus. Ces travaux suggèrent que la majorité des protéines ont un rôle dans d'autres processus cellulaires tel que la réponse innée antivirale et ciblées pas le virus dans des mécanismes d'évasion immune.
Pour tester cette hypothèse, 132 interactant virus-hôtes ont été sélectionnés et évalués par silençage génique dans un criblage d'ARNi sur la production interferon-beta (IFNB1). Nous avons ainsi observé que les réductions de l'expression de 53 interactants virus-hôte modulent la réponse antivirale innée. Une étude dans les termes de gène d'ontologie (GO) démontre un enrichissement de ces protéines au transport nucléocytoplasmique et au complexe du pore nucléaire. De plus, les gènes associés avec ces termes (CSE1L, KPNB1, RAN, TNPO1 et XPO1) ont été caractérisé comme des interactant de la protéine NS3/4A par Germain et al. (2014), et comme des régulateurs positives de la réponse innée antivirale. Comme le VHC se réplique dans le cytoplasme, nous proposons que ces interactions à des protéines associées avec le noyau confèrent un avantage de réplication et bénéficient au virus en interférant avec des processus cellulaire tel que la réponse innée.
Cette réponse innée antivirale requiert la translocation nucléaire des facteurs transcriptionnelles IRF3 et NF-κB p65 pour la production des IFNs de type I. Un essai de microscopie a été développé afin d'évaluer l’effet du silençage de 60 gènes exprimant des protéines associés au complexe du pore nucléaire et au transport nucléocytoplasmique sur la translocation d’IRF3 et NF-κB p65 par un criblage ARNi lors d’une cinétique d'infection virale.
En conclusion, l’étude démontre qu’il y a plusieurs protéines qui sont impliqués dans le transport de ces facteurs transcriptionnelles pendant une infection virale et peut affecter la production IFNB1 à différents niveaux de la réponse d'immunité antivirale. L'étude aussi suggère que l'effet de ces facteurs de transport sur la réponse innée est peut être un mécanisme d'évasion par des virus comme VHC. / Viruses interact with cellular factors in order to successfully replicate and propagate in host cells. Germain et al. (2014) performed a proteomics analysis to elucidate viral-host interactors of hepatitis C virus (HCV). They found that the majority of host factors did not have an effect on viral replication, suggesting that these host proteins may be beneficial to the virus by affecting other cellular processes such as evading the innate antiviral immunity.
To test that hypothesis, 132 virus-host interactors were selected and silenced by RNAi for their effect on inteferon-beta (IFNB1) production as a readout of the innate antiviral response. 53 were found to modulate the response with enrichment in the gene ontology (GO) terms related to nucleocytoplasmic transport and the nuclear pore complex. An interesting point is that the genes associated with these terms (CSE1L, KPNB1, RAN, TNPO1, and XPO1) were previously elucidated as HCV NS3/4A interactors by Germain et al. (2014), as well as positive regulators of the innate antiviral response. Although it is surprising that a cytoplasmic-replicating virus like HCV would interact with proteins associated with the nucleus, we proposed that viruses interact with these proteins for their benefit to interfere with the innate immune response.
The innate antiviral response requires the nuclear translocation of IRF3 and NF-κB p65 for the production of type I interferons. As it is unclear which transporters or nucleoporins are involved, 60 genes associated with the nuclear pore complex and nucleocytoplasmic transport were studied for their effect on the nuclear translocation of IRF3 and NF-κB p65 via a microscopy-based RNAi screen during a 10-hour viral infection time course.
Overall, the study revealed that many of these proteins are involved in the trafficking of these transcription factors during a viral infection, and can affect the production of IFNB1 at different levels of the innate antiviral response. The study also suggests that the effect of these transport factors on the immune response may be an evasion mechanism for viruses such as HCV.
|
Page generated in 0.1035 seconds