• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 7
  • 7
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 18
  • 17
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Evans Function Computation

Barker, Blake H. 07 July 2009 (has links) (PDF)
In this thesis, we review the stability problem for traveling waves and discuss the Evans function, an emerging tool in the stability analysis of traveling waves. We describe some recent developments in the numerical computation of the Evans function and discuss STABLAB, an interactive MATLAB based tool box that we developed. In addition, we verify the Evans function for shock layers in Burgers equation and the p-system with and without capillarity, as well as pulses in the generalized Kortweg-de Vries (gKdV) equation. We conduct a new study of parallel shock layers in isentropic magnetohydrodynamics (MHD) obtaining results consistent with stability.
22

A Numerical Analysis Approach For Estimating The Minimum Traveling Wave Speed For An Autocatalytic Reaction

Blanken, Erika 01 January 2008 (has links)
This thesis studies the traveling wavefront created by the autocatalytic cubic chemical reaction A + 2B → 3B involving two chemical species A and B, where A is the reactant and B is the auto-catalyst. The diffusion coefficients for A and B are given by DA and DB. These coefficients differ as a result of the chemical species having different size and/or weight. Theoretical results show there exist bounds, v* and v*, depending on DB/DA, where for speeds v ≥ v*, a traveling wave solution exists, while for speeds v < v*, a solution does not exist. Moreover, if DB ≤ DA, and v* and v* are similar to one another and in the order of DB/DA when it is small. On the other hand, when DA ≤ DB there exists a minimum speed vmin, such that there is a traveling wave solution if the speed v > vmin. The determination of vmin is very important in determining the dynamics of general solutions. To fill in the gap of the theoretical study, we use numerical methods to determine vmin for various cases. The numerical algorithm used is the fourth-order Runge-Kutta method (RK4).
23

Spatiotemporal patterns in microelectrode arrays during human seizures

Schlafly, Emily 12 February 2024 (has links)
Epilepsy is a disease affecting millions of people worldwide. Despite over 50 years of research, the mechanisms that generate and sustain ictal discharges, a key neural hallmark of seizures, remain unknown. While once thought to be caused by hypersynchronous neuronal firing, we now recognize that the activity underlying ictal discharges is much more complex. With the development of microelectrode arrays (MEAs) suitable for use in humans, it is possible to observe neural activity at fine spatiotemporal scales in human patients with epilepsy. However, the diversity of seizure characteristics and limited patient population has led to a number of conflicting observations and theories. The purpose of this work is to elucidate mechanisms underlying ictal discharges in humans by applying statistical analyses and computational modeling to MEA recordings from human patients with epilepsy. We approach this aim in two projects. In the first project, we unify two seemingly conflicting theories surrounding cortical sources of ictal discharges. According to the ictal wavefront theory, ictal discharges are seeded at an expanding narrow front of high neuronal firing that delineates the boundary between regions of cortex with compromised functionality, and surrounding territory where the seizure is observable in electrical recordings, but cortical function remains intact. A second theory posits that discharges are predominantly seeded from a stationary localized cortical source. The two theories are based on observations from MEA recordings of seizures in two different small cohorts of patients. In this project, we analyze and model the discharge propagation patterns in a combined dataset from both cohorts. We show that discharges are seeded at the ictal wavefront in addition to other–possibly stationary–locations. In the second project, we characterize spatiotemporal patterns in the secondary transients of complex ictal discharges. Electrographic recordings of ictal discharges often have complex waveforms. Existing analyses focus on the spatiotemporal dynamics of the first, high-amplitude transient. In this project, we establish that ictal discharges often comprise multiple transients separated by ≈60 ms. Surprisingly, and contrary to our initial hypothesis, we find that individual transients within a complex discharge may propagate with different speeds, suggesting that different mechanisms are involved in the propagation of different transients.
24

Continuum Models for the Spread of Alcohol Abuse

Teymuroglu, Zeynep 23 September 2008 (has links)
No description available.
25

Méthodes variationnelles : Applications à l'analyse d'image et au modèle de Frenkel-Kontorova / Variational methods : Applications to image analysis and to Frenkel-Kontorova model

Issa, Samar 19 December 2011 (has links)
Cette thèse est décomposée en deux parties. La première est consacrée à l'étude de la restauration d'image et la seconde partie est consacrée à l'étude d'un modèle de Frenkel-Kontorova par des méthodes issues du calcul variationnel et des équations aux dérivées partielles. Au chapitre 1, nous présentons les questions essentielles que nous traiterons dans cette thèse, puis on fait des rappels sur les définitions et quelques propriétés d'espace des fonctions à variations bornées BV , l'espace d'Orlicz et le modèle de Frenkel-Kontorova. Au chapitre 2, nous montrons que les problèmes de minimisation non convexe (restauration d'image) contenant des termes de régularisation sous-linéaires sont mal posés. Au chapitre 3, nous étudions un modèle de restauration avec un terme de régularisation à croissance non standard, proposé par Blomgren et al. : le module du gradient est élevé a une puissance qui dépend elle même du gradient. On montre qu'elle est semi-continue inférieurement pour la topologie faible d'un certain espace d'Orlicz-Sobolev qui lui est associé, ce qui permet un résultat d'existence de la solution. Au chapitre 4, nous étudions un modèle de Frenkel-Kontorova, dont on montre l'existence d'au moins une solution de type travelling wave, u. / This thesis is divided into two parts. The first is devoted to the study of image restorationand the second part is devoted to the study of a Frenkel-Kontorova model using methodsfrom the calculus of variations and partial differential equations. In chapter 1, we presentthe key issues we will discuss in this thesis, and recal the denitions and some properties ofspaces of functions of bounded variations BV , Orlicz Sobolev spaces and Frenkel-Kontorovamodel results on image analysis. In chapter 2, we show that the non-convex minimizationproblems (restoration image) involving sublinear regularizing terms are ill-posed. In chapter3, we study a model of restoration with nonstandard increasing regularizing terms,proposedby Blomgren. We show that is lower semi-continuous in the weak topologie of some Sobolev-Orlicz space associated with it, which allows existence result of the solution. In Chaptre 4, we study a Frenkel-Kontorova model, that we show existence of at least a traveling wave type solution, u.
26

High-Yield Optical Undulators Scalable to Optical Free-Electron Laser Operation by Traveling-Wave Thomson-Scattering

Steiniger, Klaus 18 April 2018 (has links) (PDF)
All across physics research, incoherent and coherent light sources are extensively utilized. Especially highly brilliant X-ray sources such as third generation synchrotrons or free-electron lasers have become an invaluable tool enabling experimental techniques that are unique to these kinds of light sources. But these sources have developed to large scale facilities and a demand in compact laboratory scale sources providing radiation of similar quality arises nowadays. This thesis focuses on Traveling-Wave Thomson-Scattering (TWTS) which allows for the realization of ultra-compact, inherently synchronized and highly brilliant light sources. The TWTS geometry provides optical undulators, through which electrons pass and thereby emit radiation, with hundreds to thousands of undulator periods by utilizing pulse-front tilted lasers pulses from high peak-power laser systems. TWTS can realize incoherent radiation sources with orders of magnitude higher photon yield than established head-on Thomson sources. Moreover, optical free-electron lasers (OFELs) can be realized with TWTS if state-of-the-art technology in electron accelerators and laser systems is utilized. Tilting the laser pulse front with respect to the wavefront by half of this interaction angle optimizes electron and laser pulse overlap by compensating the spatial offset between electrons and the laser pulse-front at the beginning of the interaction when the electrons are far from the laser pulse axis. The laser pulse-front tilt ensures continuous overlap between electrons and laser pulse while the electrons cross the laser pulse cross-sectional area. Thus the interaction distance can be controlled in TWTS by the laser pulse width rather than laser pulse duration. Utilizing wide, petawatt class laser pulses allows realizing thousands of optical undulator periods. This thesis will show that TWTS OFELs emitting ultraviolet radiation are realizable today with existing technology for electron accelerators and laser systems. The requirements on electron bunch and laser pulse quality of these ultraviolet TWTS OFELs are discussed in detail as well as the corresponding requirements of TWTS OFELs emitting in the soft and hard X-ray range. These requirements are derived from scaling laws which stem from a self-consistent analytic description of the electron bunch and radiation field dynamics in TWTS OFELs presented within this thesis. It is shown that these dynamics in TWTS OFELs are qualitatively equivalent to the electron bunch and radiation field dynamics of standard free-electron lasers which analytically proves the applicability of TWTS for the realization of an optical free-electron laser. Furthermore, experimental setup strategies to generate the pulse-front tilted TWTS laser pulses are presented and designs of experimental setups for the above examples are discussed. The presented setup strategies provide dispersion compensation, required due to angular dispersion of the laser pulse, which is especially relevant when building compact, high-yield hard X-ray TWTS sources in large interaction angle setups. An example of such an enhanced Thomson source by TWTS, which provides orders of magnitude higher spectral photon density than a comparable head-on interaction geometry, is presented, too. / Inkohärente und kohärente Lichtquellen werden in allen Feldern der physikalischen Forschung intensiv eingesetzt. Im Besonderen ermöglichen hoch-brilliante Röntgenquellen, wie Synchrotrone der dritten Generation und Freie-Elektronen Laser, einzigartige Experimentiertechniken wodurch diese zu unverzichtbaren Werkzeugen wurden. Sie sind allerdings auch im Umfang zu Großforschungseinrichtungen herangewachsen. Um den hohen Bedarf an hoch-brillianten Lichtquellen zu decken, besteht daher die Notwendigkeit neuartige und kompakte Quellen zu entwickeln welche auf dem Maßstab eines Labors realisierbar sind. Diese Dissertation widmet sich der Traveling-Wave Thomsonstreuung (TWTS) welche die Realisierung ultra-kompakter, intrinsisch synchronisierbarer und hoch-brillianter Röntgenquellen ermöglicht. TWTS ist eine Methode der Streuung von Laserpulsen an relativistischen Elektronen. Dabei durchquert ein Elektronenpuls mit nahezu Lichtgeschwindigkeit einen Laserpuls. Während der Durchquerung beginnen die Elektronen im Feld des Laserpulses zu oszillieren wobei sie Strahlung emittieren. Die ausgesandte Strahlung besitzt eine deutlich kürzere Wellenlänge als das Laserfeld aufgrund der hohen Elektronengeschwindigkeit und der damit verbundenen großen Dopplerverschiebung. Das besondere an TWTS ist, dass Elektronen- und Laserpropagationsrichtung einen Winkel einschließen sowie pulsfrontverkippte Hochleistungslaserpulse eingesetzt werden. Dadurch können um Größenordnungen längere Interaktionsdistanzen als in herkömmlichen frontalen Thomsonstreuungsanordnungen erreicht werden. TWTS ermöglicht dadurch die Realisierung optischer Freie-Elektronen Laser (OFEL) und inkohärenter Strahlungsquellen mit einer um Größenordnungen erhöhten Photonenausbeute gegenüber Thomsonstreuungsquellen in frontalen Interaktionsanordungen. Werden modernste Elektronenbeschleuniger und Lasersysteme genutzt, dann ist der Betrieb optischer Freie-Elektronen Laser bereits heute mit TWTS möglich. Das wird in der Dissertation am Beispiel eines Vakuumultraviolettstrahlung emittierenden TWTS OFEL gezeigt. Dessen Anforderungen an die Qualität der Elektronen- und Laserpulse werden im Detail in der Arbeit besprochen sowie weitere Beispiele weicher und harter Röntgenstrahlung emittierender TWTS OFEL präsentiert. Diese Anforderungen werden anhand von Skalierungsvorschriften ermittelt welche aus einer selbstkonsistenten, 1.5 dimensionalen Theorie zur Wechselwirkung zwischen Elektronen und Laserfeld in TWTS abgeleitet sind. Sowohl die Theorie zur Wechselwirkung als auch die Ableitung der Skalierungsvorschriften sind Teile dieser Dissertation. Eine wichtige Erkenntnis der Theorie ist die qualitative Äquivalenz von Elektronen- und Strahlungsfeldbewegungsgleichungen in TWTS zu denen herkömmlicher Freie-Elektronen Laser. Das beweist analytisch die Möglichkeit zur Realisierung eines OFEL mit TWTS. Einen weiteren wichtigen Teil dieser Dissertation bildet die Arbeit zur Generierung der Laserpulse mit verkippter Pulsfront. Optische Aufbauten zur Verkippung der Laserpulsfront werden vorgestellt und für einige der präsentierten TWTS OFEL ausführlich dargelegt. Die Aufbauten verkippen nicht nur die Laserpulsfront sondern gewähren gleichzeitig Kontrolle über die Laserpulsdispersionen. Dadurch kann während der gesamten Interaktionen eine ausreichend hohe Qualität des Laserfeldes sichergestellt werden, was für TWTS OFEL und inkohärente TWTS Lichtquellen mit großem Interaktionswinkel unbedingt notwendig ist. Ein Beispiel einer inkohärenten TWTS Lichtquelle wird ebenfalls präsentiert. Diese emittiert Strahlung mit einer um Größenordnungen höheren spektrale Photonendichte als eine herkömmliche Thomsonquelle in einer frontalen Streuanordnung mit vergleichbaren Laser- und Elektronenpulsen.
27

High-Yield Optical Undulators Scalable to Optical Free-Electron Laser Operation by Traveling-Wave Thomson-Scattering

Steiniger, Klaus 15 December 2017 (has links)
All across physics research, incoherent and coherent light sources are extensively utilized. Especially highly brilliant X-ray sources such as third generation synchrotrons or free-electron lasers have become an invaluable tool enabling experimental techniques that are unique to these kinds of light sources. But these sources have developed to large scale facilities and a demand in compact laboratory scale sources providing radiation of similar quality arises nowadays. This thesis focuses on Traveling-Wave Thomson-Scattering (TWTS) which allows for the realization of ultra-compact, inherently synchronized and highly brilliant light sources. The TWTS geometry provides optical undulators, through which electrons pass and thereby emit radiation, with hundreds to thousands of undulator periods by utilizing pulse-front tilted lasers pulses from high peak-power laser systems. TWTS can realize incoherent radiation sources with orders of magnitude higher photon yield than established head-on Thomson sources. Moreover, optical free-electron lasers (OFELs) can be realized with TWTS if state-of-the-art technology in electron accelerators and laser systems is utilized. Tilting the laser pulse front with respect to the wavefront by half of this interaction angle optimizes electron and laser pulse overlap by compensating the spatial offset between electrons and the laser pulse-front at the beginning of the interaction when the electrons are far from the laser pulse axis. The laser pulse-front tilt ensures continuous overlap between electrons and laser pulse while the electrons cross the laser pulse cross-sectional area. Thus the interaction distance can be controlled in TWTS by the laser pulse width rather than laser pulse duration. Utilizing wide, petawatt class laser pulses allows realizing thousands of optical undulator periods. This thesis will show that TWTS OFELs emitting ultraviolet radiation are realizable today with existing technology for electron accelerators and laser systems. The requirements on electron bunch and laser pulse quality of these ultraviolet TWTS OFELs are discussed in detail as well as the corresponding requirements of TWTS OFELs emitting in the soft and hard X-ray range. These requirements are derived from scaling laws which stem from a self-consistent analytic description of the electron bunch and radiation field dynamics in TWTS OFELs presented within this thesis. It is shown that these dynamics in TWTS OFELs are qualitatively equivalent to the electron bunch and radiation field dynamics of standard free-electron lasers which analytically proves the applicability of TWTS for the realization of an optical free-electron laser. Furthermore, experimental setup strategies to generate the pulse-front tilted TWTS laser pulses are presented and designs of experimental setups for the above examples are discussed. The presented setup strategies provide dispersion compensation, required due to angular dispersion of the laser pulse, which is especially relevant when building compact, high-yield hard X-ray TWTS sources in large interaction angle setups. An example of such an enhanced Thomson source by TWTS, which provides orders of magnitude higher spectral photon density than a comparable head-on interaction geometry, is presented, too. / Inkohärente und kohärente Lichtquellen werden in allen Feldern der physikalischen Forschung intensiv eingesetzt. Im Besonderen ermöglichen hoch-brilliante Röntgenquellen, wie Synchrotrone der dritten Generation und Freie-Elektronen Laser, einzigartige Experimentiertechniken wodurch diese zu unverzichtbaren Werkzeugen wurden. Sie sind allerdings auch im Umfang zu Großforschungseinrichtungen herangewachsen. Um den hohen Bedarf an hoch-brillianten Lichtquellen zu decken, besteht daher die Notwendigkeit neuartige und kompakte Quellen zu entwickeln welche auf dem Maßstab eines Labors realisierbar sind. Diese Dissertation widmet sich der Traveling-Wave Thomsonstreuung (TWTS) welche die Realisierung ultra-kompakter, intrinsisch synchronisierbarer und hoch-brillianter Röntgenquellen ermöglicht. TWTS ist eine Methode der Streuung von Laserpulsen an relativistischen Elektronen. Dabei durchquert ein Elektronenpuls mit nahezu Lichtgeschwindigkeit einen Laserpuls. Während der Durchquerung beginnen die Elektronen im Feld des Laserpulses zu oszillieren wobei sie Strahlung emittieren. Die ausgesandte Strahlung besitzt eine deutlich kürzere Wellenlänge als das Laserfeld aufgrund der hohen Elektronengeschwindigkeit und der damit verbundenen großen Dopplerverschiebung. Das besondere an TWTS ist, dass Elektronen- und Laserpropagationsrichtung einen Winkel einschließen sowie pulsfrontverkippte Hochleistungslaserpulse eingesetzt werden. Dadurch können um Größenordnungen längere Interaktionsdistanzen als in herkömmlichen frontalen Thomsonstreuungsanordnungen erreicht werden. TWTS ermöglicht dadurch die Realisierung optischer Freie-Elektronen Laser (OFEL) und inkohärenter Strahlungsquellen mit einer um Größenordnungen erhöhten Photonenausbeute gegenüber Thomsonstreuungsquellen in frontalen Interaktionsanordungen. Werden modernste Elektronenbeschleuniger und Lasersysteme genutzt, dann ist der Betrieb optischer Freie-Elektronen Laser bereits heute mit TWTS möglich. Das wird in der Dissertation am Beispiel eines Vakuumultraviolettstrahlung emittierenden TWTS OFEL gezeigt. Dessen Anforderungen an die Qualität der Elektronen- und Laserpulse werden im Detail in der Arbeit besprochen sowie weitere Beispiele weicher und harter Röntgenstrahlung emittierender TWTS OFEL präsentiert. Diese Anforderungen werden anhand von Skalierungsvorschriften ermittelt welche aus einer selbstkonsistenten, 1.5 dimensionalen Theorie zur Wechselwirkung zwischen Elektronen und Laserfeld in TWTS abgeleitet sind. Sowohl die Theorie zur Wechselwirkung als auch die Ableitung der Skalierungsvorschriften sind Teile dieser Dissertation. Eine wichtige Erkenntnis der Theorie ist die qualitative Äquivalenz von Elektronen- und Strahlungsfeldbewegungsgleichungen in TWTS zu denen herkömmlicher Freie-Elektronen Laser. Das beweist analytisch die Möglichkeit zur Realisierung eines OFEL mit TWTS. Einen weiteren wichtigen Teil dieser Dissertation bildet die Arbeit zur Generierung der Laserpulse mit verkippter Pulsfront. Optische Aufbauten zur Verkippung der Laserpulsfront werden vorgestellt und für einige der präsentierten TWTS OFEL ausführlich dargelegt. Die Aufbauten verkippen nicht nur die Laserpulsfront sondern gewähren gleichzeitig Kontrolle über die Laserpulsdispersionen. Dadurch kann während der gesamten Interaktionen eine ausreichend hohe Qualität des Laserfeldes sichergestellt werden, was für TWTS OFEL und inkohärente TWTS Lichtquellen mit großem Interaktionswinkel unbedingt notwendig ist. Ein Beispiel einer inkohärenten TWTS Lichtquelle wird ebenfalls präsentiert. Diese emittiert Strahlung mit einer um Größenordnungen höheren spektrale Photonendichte als eine herkömmliche Thomsonquelle in einer frontalen Streuanordnung mit vergleichbaren Laser- und Elektronenpulsen.
28

Distributed Circuit Techniques for Equalization of Short Multimode Fiber Links

Ng, George Chung Fai 30 July 2008 (has links)
Electronic dispersion compensation (EDC) of intermodal dispersion on short multimode fiber (MMF) links operating at 40 Gb/s is investigated through system level simulations and the design of two analog integrated circuit (IC) equalizers. System simulations using worst-case MMF link models show the effectiveness of a 2-tap baud spaced finite impulse response (FIR) equalizer for 40-m links, and a second-order Tbaud/2 infinite impulse response (IIR) equalizer for 50-m links. An IIR filter topology suitable for IC implementation with double loops and multiple delay sections was developed. The 2-tap FIR and the IIR equalizer are implemented in UMC 0.13-um and STM 90-nm CMOS processes respectively. Measurements demonstrate the FIR and IIR equalizing 38-Gb/s and 30-Gb/s cable channels respectively. To the author's knowledge, the double-loop multi-delay IIR equalizer is the first integrated traveling-wave equalizer utilizing poles as a means of frequency boosting, contrasting the conventional FIR technique of utilizing zeros.
29

Distributed Circuit Techniques for Equalization of Short Multimode Fiber Links

Ng, George Chung Fai 30 July 2008 (has links)
Electronic dispersion compensation (EDC) of intermodal dispersion on short multimode fiber (MMF) links operating at 40 Gb/s is investigated through system level simulations and the design of two analog integrated circuit (IC) equalizers. System simulations using worst-case MMF link models show the effectiveness of a 2-tap baud spaced finite impulse response (FIR) equalizer for 40-m links, and a second-order Tbaud/2 infinite impulse response (IIR) equalizer for 50-m links. An IIR filter topology suitable for IC implementation with double loops and multiple delay sections was developed. The 2-tap FIR and the IIR equalizer are implemented in UMC 0.13-um and STM 90-nm CMOS processes respectively. Measurements demonstrate the FIR and IIR equalizing 38-Gb/s and 30-Gb/s cable channels respectively. To the author's knowledge, the double-loop multi-delay IIR equalizer is the first integrated traveling-wave equalizer utilizing poles as a means of frequency boosting, contrasting the conventional FIR technique of utilizing zeros.
30

一個具擴散性的SIR模型之行進波解 / Traveling wave solutions for a diffusive SIR model

余陳宗, Yu, Chen Tzung Unknown Date (has links)
本篇論文討論的是SIR模型的反應擴散方程          s_t = d_1 s_xx − βsi/(s + i),          i_t = d_2 i_xx + βsi/(s + i) − γi,          r_t = d_3 r_xx + γi, 之行進波的存在性,其中模型描述的是在一個封閉區域裡流行疾病爆發的狀態。這裡的 β 是傳播係數,γ 是治癒或移除(即死亡)速率,s 是未被傳染個體數,i 是傳染源個體數,d_1、d_2、d_3分別為其擴散之係數。   我們將使用Schauder不動點定理(Schauder fixed point theorem)、Arzela-Ascoli定理和最大值原理(maximum principle)來證明:該系統存在最小速度為c=c*:=2√(d2( β - γ ))之行進波解。我們的結果回答了[11]裡所提出的開放式問題。 / In this thesis, we study the existence of traveling waves of a reaction-diffusion equation for a diffusive epidemic SIR model          s_t = d_1 s_xx − βsi/(s + i),          i_t = d_2 i_xx + βsi/(s + i) − γi,          r_t = d_3 r_xx + γi, which describes an infectious disease outbreak in a closed population. Here β is the transmission coefficient, γ is the recovery or remove rate, and s, i, and r rep-resent numbers of susceptible individuals, infected individuals, and removed individuals, respectively, and d_1, d_2, and d_3 are their diffusion rates. We use the Schauder fixed point theorem, the Arzela-Ascoli theorem, and the maximum principle to show that this system has a traveling wave solution with minimum speed c=c*:=2√(d2( β - γ )). Our result answers an open problem proposed in [11].

Page generated in 0.2047 seconds