• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Einfluss CD4+CD25+ regulatorischer T-Zellen auf die hämatopoetische Rekonstitution nach syngener und allogener Stammzelltransplantation in einem dreifach transgenen Mausmodell / Influence of CD4+CD25+ regulatory T cells on hematopoietic recovery after syngeneic and allogeneic stem cell transplantation in a triple transgenic mouse model

Rothe, Katherina 25 May 2011 (has links) (PDF)
Regulatorische CD4+CD25+ T-Zellen (Tregs) stellen eine kleine Zellpopulation dar (1-5% der peripheren Blutzellen), die hauptsächlich für die Regulierung von Immunreaktionen verantwortlich ist. In der vorliegenden Arbeit wurden diese Zellen gemeinsam mit Stammzellen syngen und allogen kotransplantiert, um ihren Effekt auf das Anwachsen der Spenderzellen und die Rekonstitution der Hämatopoese nach Ganzkörperbestrahlung zu untersuchen. Es wurden humanisierte dreifach transgene Empfängermäuse (C57Bl/6-TTG) verwendet (human CD4+, murin CD4-, human HLA-DR+), wodurch sowohl bei syngener als auch bei allogener Transplantation eine Unterscheidung zwischen Spender- und Empfängerzellen möglich ist. Zunächst wurden CD4+CD25+ T-Zellen durch Separation aus Milzzellen bzw. Buffy Coats gewonnen und in vitro mittels Durchflusszytometrie und ELISpot charakterisiert. Anschließend fanden syngene und allogene Transplantationen mit einer Laufzeit von 61 Tagen statt. Überleben und Gewicht wurden täglich ermittelt und außerdem wurden wöchentlich Blutbilder erstellt und durchflusszytometrische Chimärismusanalysen (murines und humanes CD4, CD8, MHC (H2Db, H2Kd)) durchgeführt. Durch die magnetische Separation konnte die FoxP3-Expression der murinen Zellen (Transplantat) von 1,6% in der Ausgangspopulation auf 68,5% in der CD4+CD25+ Population gesteigert werden. In den ELISpot-Assays zeigten diese separierten Zellen, wie für Tregs typisch, keine Produktion von Interleukin-2. Nach syngener Transplantation (Spender: wildtyp C57Bl/6) von 2x106 Knochenmarkzellen und 1x106 CD4+CD25+ T-Zellen überlebten 100% der Tiere, wie zu erwarten war. Dabei setzte bei Tregs-kotransplantierten Tieren die Blutbildung nach bestrahlungsbedingter Leukozytopenie aufgrund bisher nicht bekannter Mechanismen früher wieder ein und der Donor-Zell-Chimärismus war an Tag 19 nach Transplantation signifikant höher als in der Kontrollgruppe. Dies zeigt, dass regulatorische T-Zellen im syngenen Transplantationsmodell einen positiven Effekt auf die Akzeptanz bzw. das Anwachsen des Transplantats haben. Dieses Modell entspricht klinisch einer autologen Transplantation. Nach einer knochenmarkzerstörenden Therapie werden dem Patienten eigene Stammzellen reinfundiert, um die Blutbildung und das Immunsystem wieder in Gang zu bringen. Der Zusatz von regulatorischen T-Zellen zum autologen Stammzelltransplantat könnte das Anwachsen der Zellen beschleunigen und die gefährliche Phase der Immunsuppression, in der es häufig zu Sekundärinfektionen kommt, verkürzen. Die Transplantation der gleichen Zahl von allogenen Spenderzellen (wildtyp Balb/c) führte überraschend zum Tod aller dreifach transgenen Empfängertiere. Der Vergleich zu Experimenten mit wildtyp C57Bl/6-Empfängertieren zeigte, dass dreifach transgene Mäuse sehr viel höhere Zellzahlen im Transplantat zum Überleben benötigen (Daten nicht gezeigt). Das Ausbleiben der Blutbildung nach der Bestrahlung führte zu vermindertem Allgemeinbefinden, gestörter Futter- und Wassseraufnahme und Exsikkose bis zum Tod bzw. aus Tierschutzgründen zur Euthanasie. Durch Erhöhung der Zellzahl im Transplantat auf 1x107 Knochenmark + 5x106 Milzzellen überlebten 25% der Mäuse, bei 3x107 Knochenmark + 5x106 Milzzellen waren es 50%. Anders als im syngenen Modell führte die Kotransplantation 1,5x106 allogener CD4+CD25+ T-Zellen zu 3x107 Knochenmark + 5x106 Milzzellen zum Versterben der Tiere. Dies verdeutlicht, dass regulatorische T-Zellen in diesem allogenen Transplantationsmodell das Anwachsen des Transplantats behindern (Transplantatversagen). Hier gilt es zu klären, ob dieser Effekt spezifisch für die gewählten Mausstämme ist und welche Mechanismen für das Transplantatversagen verantwortlich sind. In einem dreifach transgenen Mausmodell konnte ein positiver Effekt von regulatorischen T-Zellen auf die Rekonstitution der Hämatopoese bei syngener Kotransplantation nachgewiesen werden. Im allogenen Transplantationsmodell hingegen führte die Kotransplantation CD4+CD25+ T-Zellen zum Versterben der Empfänger. Der beschriebene und schon publizierte positive Effekt spenderspezifischer Tregs zur Behandlung von Graft versus Host Disease nach allogener Stammzelltransplantation widerspricht diesen Ergebnissen nicht, da es bei diesen Patienten schon zum Engraftment von hämatopoetischen Stammzellen gekommen ist. Dies hat weitreichende Konsequenzen für die therapeutische Anwendung regulatorischer T-Zellen bei hämatologischen Erkrankungen in der Human- und Veterinärmedizin. / Regulatory CD4+CD25+ T cells (Tregs) represent a small cell population (1-5% of peripheral blood cells) mainly responsible for the regulation of the immune system. In the present work, these cells were cotransplanted with syngeneic and allogeneic stem cells in order to analyze the effect of Tregs on the reconstitution of hematopoiesis after total body irradiation. Humanized triple transgenic hosts (C57Bl/6-TTG) (human CD4+, murine CD4-, human HLA-DR+) were applied allowing differentiation of donor and host cells in syngeneic and allogeneic transplantation settings. Murine and human CD4+CD25+ T cells were magnetically separated out of splenocytes or buffy-coats and characterized in vitro by means of flow cytometry and ELISpot. Afterwards syngeneic and allogeneic transplantation experiments were performed for a period of 61 days. Survival and weight were assessed daily and once a week blood parameters and chimerism analyses (murine and human CD4, CD8, MHC (H2Db/ H2Kd)) were carried out. FoxP3 expression increased from 1,6% in the initial murine cell fraction to 68,5% in the separated CD4+CD25+ T cells. ELISpot assays showed the typical lack of interleukin 2 production of Tregs. After syngeneic transplantation (donor: wildtype C57Bl/6) of 2x106 bone marrow cells and 1x106 CD4+CD25+ T cells, 100% of mice survived what was to be expected. Cotransplanted animals showed earlier reconstitution of hematopoiesis after leukocytopenia and significant higher donor-cell-chimerism on day 19 after transplantation. The mechanisms for this positive effect of Tregs in syngeneic transplantation on the engraftment have to be investigated. This model clinically correspond an autologous transplantation where patients are treated with their own stem cells after a myeloablative treatment (chemotherapy or irradiation). The addition of regulatory T cells to the transplant could accelerate the engraftment and shorten the risky period of immunosuppression. Injection of the same numbers of allogeneic cells (donor: wildtype Balb/c) did not preserve hosts from mortality. Compared to experiments with wildtype recipients, results showed that triple transgenic mice need much higher cell numbers in the transplant for survival (data not shown). The failure of hematopoiesis after irradiation led to reduced general condition, disordered ingestion and exsikkosis leading to death respectively to euthanasia for reasons of protection of animals. By scaling up the cell number in the inoculum to 1x107 bone marrow cells + 5x106 splenocytes 25% of mice survived, with 3x107 bone marrow cells + 5x106 splenocytes survival was 50%. In contrast to syngeneic experiments, cotransplantation of 1,5x106 allogeneic CD4+CD25+ T cells and 3x107 bone marrow cells + 5x106 splenocytes did not prevent animals from mortality. In this allogeneic transplantation model Tregs restrain engraftment (graft failure). It has to be clarified if this effect is specific for the utilized mouse strains and which mechanisms are responsible for the graft failure. In the syngeneic triple transgenic mouse model cotransplantation of CD4+CD25+ T cells showed a positive effect on reconstitution of hematopoiesis after irradiation. In the allogeneic setting however cotransplantation of allogeneic regulatory T cells avoided the engraftment of transplanted cells. The described and published effect of donor-specific Tregs for treatment of graft versus host disease after allogeneic transplantation does not contradict the presented results because treated patients already possessed engrafted hematopoietic stem cells. The results have wide consequences for the therapeutic appliance of regulatory T cells in hematological diseases in human and veterinary medicine.
2

Einfluss CD4+CD25+ regulatorischer T-Zellen auf die hämatopoetische Rekonstitution nach syngener und allogener Stammzelltransplantation in einem dreifach transgenen Mausmodell

Rothe, Katherina 05 April 2011 (has links)
Regulatorische CD4+CD25+ T-Zellen (Tregs) stellen eine kleine Zellpopulation dar (1-5% der peripheren Blutzellen), die hauptsächlich für die Regulierung von Immunreaktionen verantwortlich ist. In der vorliegenden Arbeit wurden diese Zellen gemeinsam mit Stammzellen syngen und allogen kotransplantiert, um ihren Effekt auf das Anwachsen der Spenderzellen und die Rekonstitution der Hämatopoese nach Ganzkörperbestrahlung zu untersuchen. Es wurden humanisierte dreifach transgene Empfängermäuse (C57Bl/6-TTG) verwendet (human CD4+, murin CD4-, human HLA-DR+), wodurch sowohl bei syngener als auch bei allogener Transplantation eine Unterscheidung zwischen Spender- und Empfängerzellen möglich ist. Zunächst wurden CD4+CD25+ T-Zellen durch Separation aus Milzzellen bzw. Buffy Coats gewonnen und in vitro mittels Durchflusszytometrie und ELISpot charakterisiert. Anschließend fanden syngene und allogene Transplantationen mit einer Laufzeit von 61 Tagen statt. Überleben und Gewicht wurden täglich ermittelt und außerdem wurden wöchentlich Blutbilder erstellt und durchflusszytometrische Chimärismusanalysen (murines und humanes CD4, CD8, MHC (H2Db, H2Kd)) durchgeführt. Durch die magnetische Separation konnte die FoxP3-Expression der murinen Zellen (Transplantat) von 1,6% in der Ausgangspopulation auf 68,5% in der CD4+CD25+ Population gesteigert werden. In den ELISpot-Assays zeigten diese separierten Zellen, wie für Tregs typisch, keine Produktion von Interleukin-2. Nach syngener Transplantation (Spender: wildtyp C57Bl/6) von 2x106 Knochenmarkzellen und 1x106 CD4+CD25+ T-Zellen überlebten 100% der Tiere, wie zu erwarten war. Dabei setzte bei Tregs-kotransplantierten Tieren die Blutbildung nach bestrahlungsbedingter Leukozytopenie aufgrund bisher nicht bekannter Mechanismen früher wieder ein und der Donor-Zell-Chimärismus war an Tag 19 nach Transplantation signifikant höher als in der Kontrollgruppe. Dies zeigt, dass regulatorische T-Zellen im syngenen Transplantationsmodell einen positiven Effekt auf die Akzeptanz bzw. das Anwachsen des Transplantats haben. Dieses Modell entspricht klinisch einer autologen Transplantation. Nach einer knochenmarkzerstörenden Therapie werden dem Patienten eigene Stammzellen reinfundiert, um die Blutbildung und das Immunsystem wieder in Gang zu bringen. Der Zusatz von regulatorischen T-Zellen zum autologen Stammzelltransplantat könnte das Anwachsen der Zellen beschleunigen und die gefährliche Phase der Immunsuppression, in der es häufig zu Sekundärinfektionen kommt, verkürzen. Die Transplantation der gleichen Zahl von allogenen Spenderzellen (wildtyp Balb/c) führte überraschend zum Tod aller dreifach transgenen Empfängertiere. Der Vergleich zu Experimenten mit wildtyp C57Bl/6-Empfängertieren zeigte, dass dreifach transgene Mäuse sehr viel höhere Zellzahlen im Transplantat zum Überleben benötigen (Daten nicht gezeigt). Das Ausbleiben der Blutbildung nach der Bestrahlung führte zu vermindertem Allgemeinbefinden, gestörter Futter- und Wassseraufnahme und Exsikkose bis zum Tod bzw. aus Tierschutzgründen zur Euthanasie. Durch Erhöhung der Zellzahl im Transplantat auf 1x107 Knochenmark + 5x106 Milzzellen überlebten 25% der Mäuse, bei 3x107 Knochenmark + 5x106 Milzzellen waren es 50%. Anders als im syngenen Modell führte die Kotransplantation 1,5x106 allogener CD4+CD25+ T-Zellen zu 3x107 Knochenmark + 5x106 Milzzellen zum Versterben der Tiere. Dies verdeutlicht, dass regulatorische T-Zellen in diesem allogenen Transplantationsmodell das Anwachsen des Transplantats behindern (Transplantatversagen). Hier gilt es zu klären, ob dieser Effekt spezifisch für die gewählten Mausstämme ist und welche Mechanismen für das Transplantatversagen verantwortlich sind. In einem dreifach transgenen Mausmodell konnte ein positiver Effekt von regulatorischen T-Zellen auf die Rekonstitution der Hämatopoese bei syngener Kotransplantation nachgewiesen werden. Im allogenen Transplantationsmodell hingegen führte die Kotransplantation CD4+CD25+ T-Zellen zum Versterben der Empfänger. Der beschriebene und schon publizierte positive Effekt spenderspezifischer Tregs zur Behandlung von Graft versus Host Disease nach allogener Stammzelltransplantation widerspricht diesen Ergebnissen nicht, da es bei diesen Patienten schon zum Engraftment von hämatopoetischen Stammzellen gekommen ist. Dies hat weitreichende Konsequenzen für die therapeutische Anwendung regulatorischer T-Zellen bei hämatologischen Erkrankungen in der Human- und Veterinärmedizin. / Regulatory CD4+CD25+ T cells (Tregs) represent a small cell population (1-5% of peripheral blood cells) mainly responsible for the regulation of the immune system. In the present work, these cells were cotransplanted with syngeneic and allogeneic stem cells in order to analyze the effect of Tregs on the reconstitution of hematopoiesis after total body irradiation. Humanized triple transgenic hosts (C57Bl/6-TTG) (human CD4+, murine CD4-, human HLA-DR+) were applied allowing differentiation of donor and host cells in syngeneic and allogeneic transplantation settings. Murine and human CD4+CD25+ T cells were magnetically separated out of splenocytes or buffy-coats and characterized in vitro by means of flow cytometry and ELISpot. Afterwards syngeneic and allogeneic transplantation experiments were performed for a period of 61 days. Survival and weight were assessed daily and once a week blood parameters and chimerism analyses (murine and human CD4, CD8, MHC (H2Db/ H2Kd)) were carried out. FoxP3 expression increased from 1,6% in the initial murine cell fraction to 68,5% in the separated CD4+CD25+ T cells. ELISpot assays showed the typical lack of interleukin 2 production of Tregs. After syngeneic transplantation (donor: wildtype C57Bl/6) of 2x106 bone marrow cells and 1x106 CD4+CD25+ T cells, 100% of mice survived what was to be expected. Cotransplanted animals showed earlier reconstitution of hematopoiesis after leukocytopenia and significant higher donor-cell-chimerism on day 19 after transplantation. The mechanisms for this positive effect of Tregs in syngeneic transplantation on the engraftment have to be investigated. This model clinically correspond an autologous transplantation where patients are treated with their own stem cells after a myeloablative treatment (chemotherapy or irradiation). The addition of regulatory T cells to the transplant could accelerate the engraftment and shorten the risky period of immunosuppression. Injection of the same numbers of allogeneic cells (donor: wildtype Balb/c) did not preserve hosts from mortality. Compared to experiments with wildtype recipients, results showed that triple transgenic mice need much higher cell numbers in the transplant for survival (data not shown). The failure of hematopoiesis after irradiation led to reduced general condition, disordered ingestion and exsikkosis leading to death respectively to euthanasia for reasons of protection of animals. By scaling up the cell number in the inoculum to 1x107 bone marrow cells + 5x106 splenocytes 25% of mice survived, with 3x107 bone marrow cells + 5x106 splenocytes survival was 50%. In contrast to syngeneic experiments, cotransplantation of 1,5x106 allogeneic CD4+CD25+ T cells and 3x107 bone marrow cells + 5x106 splenocytes did not prevent animals from mortality. In this allogeneic transplantation model Tregs restrain engraftment (graft failure). It has to be clarified if this effect is specific for the utilized mouse strains and which mechanisms are responsible for the graft failure. In the syngeneic triple transgenic mouse model cotransplantation of CD4+CD25+ T cells showed a positive effect on reconstitution of hematopoiesis after irradiation. In the allogeneic setting however cotransplantation of allogeneic regulatory T cells avoided the engraftment of transplanted cells. The described and published effect of donor-specific Tregs for treatment of graft versus host disease after allogeneic transplantation does not contradict the presented results because treated patients already possessed engrafted hematopoietic stem cells. The results have wide consequences for the therapeutic appliance of regulatory T cells in hematological diseases in human and veterinary medicine.
3

ADAM30 et métabolisme de l'APP : implication dans le développement physiopathologique de la maladie d'Alzheimer / ADAM30 and APP metabolism : an involment in Alzheimer's disease physiopathological development

Letronne, Florent 17 December 2014 (has links)
L’accumulation cérébrale progressive de peptides amyloïdes générés à partir du clivage du précurseur du peptide amyloïde (APP) par les sécrétases est un mécanisme central de la maladie d’Alzheimer. C’est pourquoi, améliorer la compréhension de la régulation et de l’homéostasie du métabolisme de l’APP est devenu primordial. Partant de ce constat, nous avons supposé qu’une partie de la réponse pourrait être apportée par la caractérisation de nouveaux acteurs du métabolisme de l’APP. De part leurs rôles cruciaux dans le cerveau (développement, plasticité et réparations) et dans le métabolisme de l’APP (α-sécrétases), les ADAMs sont des protéines d’intérêt dont certaines fonctions ou rôles restent à déterminer. Précédemment, par une approche transcriptomique ciblant la famille des ADAMs dans des cerveaux de patients et de contrôles, ADAM30 a été retrouvée sous-exprimée dans le cerveau des patients atteints de la pathologie. Dans deux modèles cellulaires nous avions constaté que la sous-expression d’ADAM30 entraînait une augmentation de tous les produits du métabolisme de l’APP comme chez les patients. Le résultat opposé a été obtenu lors de la sur-expression d’ADAM30 dans ces cellules. Pour tenter de répliquer ces résultats dans un modèle plus proche de la physiopathologie humaine, nous avons développé un modèle de souris triples transgéniques surexprimant l’APPSweInd et ADAM30 de manière conditionnelle. Dans ce modèle nous avons observé et mesuré une diminution des dépôts amyloïdes dans le cerveau des souris exprimant ADAM30. Dans un second temps puisqu’il avait été montré au laboratoire qu’ADAM30 ne module pas l’activité des sécrétases et ne clive pas directement l’APP, nous avons cherché à déterminer les substrats d’ADAM30 dans le cadre du métabolisme de l’APP. Par une approche systématique nous avons pu déterminer que la Cathepsine D (CTSD) et l’Insuline Receptor Substrat 4 (IRS4) sont deux substrats potentiels d’ADAM30. Dans nos modèles cellulaires et de souris, nous avons pu constater qu’ADAM30 est capable de cliver et d’activer la CTSD. L’activité de la CTSD semble nécessaire pour l’action d’ADAM30 sur le métabolisme de l’APP. Nous avons pu déterminer que l’action spécifique d’ADAM30 pour la CTSD est dépendante de la séquence d’adressage au lysosome située dans l’extrémité C-terminale de l’APP. Comme la CTSD est une protéine Lysosomale, ADAM30 pourrait favoriser spécifiquement l’activation de la CTSD augmentant ainsi la dégradation de l’APP au sein de la voie endosome/lysosome. Ce mécanisme limiterait l’entrée de l’APP dans son métabolisme et donc la production de peptides amyloïdes. Afin de mieux comprendre la spécificité d’action d’ADAM30 pour la CTSD et l’APP, nous avons commencé à travailler sur le rôle potentiel d’IRS4 et la relation entre la voie de signalisation de l’Insuline et le métabolisme de l’APP. Nos travaux nous ont donc permis de mettre en évidence un nouvel acteur du métabolisme de l’APP, ADAM30, intervenant dans la régulation et la dégradation de ce dernier et ainsi d’améliorer notre compréhension des mécanismes de régulations fins impliqués dans le processus physiopathologique de la maladie d’Alzheimer. / Progressive intra-cerebral accumulation of amyloid peptides formed after sequential cleavage of the amyloid peptide precursor (APP) by secretases , is a central mecanism for Alzheimer’s disease. Therefore, a better understanding of APP regulation and homeostasy is now crucial. With this background, we postulate that the characterization of new actors in the APP metabolism could provide a more subtle understanding of this APP metabolism and trafficking. From their obvious implication in brain (development, plasticity and repair) and in APP metabolism (α-secretases), ADAMs (A Disintegrin And Metalloprotease) are an important protein proteins family which still have some undetermined function or role. Previously, a transcriptomic approach targeting ADAMs family bas been done at the laboratory on Alzheimer’s patient or control brains and found ADAM30 as under-expressed in Alzheimer’s patient brains. On cellular models, we confirmed that ADAM30 under-expression was associate with an increase in production/secretion of all the APP metabolim byproducts. Opposite results were found with ADAM30 over-expression. To replicate those results in another model closest to human pathophysiology, we have developed a triple transgenic mice model over-expressing APPSweInd and conditionally over-expressing ADAM30. In this model, we have observed and measured a decrease in amyloid deposits in mice brains over-expressing ADAM30. Secondly, because ADAM30 did not modulate secretase activities and did not cleave APP directly, we decided to determine ADAM30 substrats in the APP metabolism context. With a systematic approach, we have determined that Cathepsin D (CTSD) and Insulin Receptor Substrat 4 (IRS4) are two ADAM30 potential substrats. In our cellular models, we have found that ADAM30 is able to cleave and activate CTSD. This CTSD activity is required for ADAM30 action on APP metabolism. We have determined that ADAM30 specific action for CTSD is dependent on lysosome adressing sequence localised in APP C-terminal part. CTSD is a lysosomal protein and so ADAM30 would make CTSD specific activation easier. This mecanism would be able to increase APP degradation in endosome/lysosome pathway and reduce APP entry in its metabolism. To better understand ADAM30 specific action on CTSD and APP, we begin to investigate the potential role of IRS4 and the relation between insulin signaling pathway ans APP metabolism. Combined together, those data suggest that ADAM30 is a new APP metabolism actor, involved in an early APP regulation and degradation pathway dependent on lysosome activation. This study participate in a better understanding of the fine mecanism regulations involved in Alzheimer’s disease pathophysiological process.

Page generated in 0.0825 seconds