• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mass spectrometric analysis of the reactivity of trityl cation

Wei, Alan An Jung 29 April 2019 (has links)
Ever since its accidental discovery in the 70s, methylaluminoxane, MAO, has been a popular and widely used activator in olefin polymerization. Hydrolysis of primethylaluminum, Me3Al, produces MAO, an aluminum-, oxygen-, and methyl-containing oligomer. Polyolefins have become one of the most produced polymers, where MAO-activated single-site catalysts are responsible for the synthesis of polymers with highly defined structures. The detailed structure of MAO however, remains a mystery. In order to thoroughly understand the reactivity of MAO, knowing more about it is essential. Electrospray ionization mass spectrometry (ESI-MS) has proven to be a useful technique for studying catalysts and their activation chemistry. It has been shown that MAO is best thought of as a source for the highly reactive and Lewis acidic dimethylaluminum cation, [Me2Al]+. Synthetically, this ion is accessible via the reaction between trityl tetrakis(pentafluorophenyl)borate, [Ph3C]+[B(C6F5)4]- and trimethylaluminum, and this reaction was investigated in detail. A new reaction, substitution of H for CH3 onto the phenyl ring of the trityl carbocation, [Ph3C]+, was detected and found to be general for all trialkylaluminums studied. All instruments with detectors are prone to signal saturation at high concentration and mass spectrometers are no exception. Despite the advantages that ESI-MS offers, saturation can be one of the main obstacles in terms of the accurate quantification of species. This thesis tackles saturation issues in ESI-MS explicitly, because relatively high concentrations were necessary in order to keep unwanted decomposition reactions to a minimum. By detuning various parameters that allows troubleshooting this issue, data that better reflects the reality and the corresponding quantification of species is obtained. With the optimal settings of parameters, quantitative studies and the reactivity regarding the addition of trimethylaluminum, Me3Al, to the trityl carbocation [Ph3C]+ can be better understood. / Graduate
2

X-Ray Crystallographic Studies On Tosyl, Trityl Nucleosides And A 2'-Nucleotide

Prahadeeswaran, D 05 1900 (has links) (PDF)
No description available.
3

Optimizing purification of oligonucleotides with reversed phase trityl-on solid phase extraction

Bartuma, Ninorta January 2019 (has links)
Oligonucleotides are synthetic strings of DNA or RNA used mostly for biochemical analysis and diagnostics. For them to be useful in these fields, a purity over 90% is most often required. However, when synthesizing these sequences, many “failures” (shorter sequences) are made in the step-wise process. The synthesized oligonucleotides need to therefore be purified. This is most often done with gel electrophoresis or liquid chromatography. These methods are, on the other hand, very time-consuming and laborious. Solid phase extraction (SPE) is a much faster purification method if optimized and it can be done with the standard cartridges as well as 96-well plates, that allow many samples to efficiently be run at the same time. With reversed phase (RP) SPE, the dimethoxytrityl (DMT) group, that is attached to the target at the final synthesis step, can be used for stronger retention to the bed sorbent and leaving only the target at the final eluting stage. The impurities without a DMT-on group, that do not adsorb to the sorbent, are washed away in earlier steps. The purpose of this study is to optimize an SPE method for purification of oligonucleotides. Two different cartridges, Clarity QSP (Phenomenex) and Glen-Pak (Glen Research) were used. The purity analysis and oligonucleotide identification were done using anion exchange - high performance liquid chromatography (AIE-HPLC) and time-of-flight mass spectrometry (TOF MS). To conclude, Clarity QSP achieved, at the most, a purity of 68.8% with the recommended SPE steps by Phenomenex. Alterations in the extraction procedure resulted in similar purity or lower. Glen-Pak reached a peak purity of 78.8% when doing a double salt wash of 5% ACN in 2 M sodium chloride and another double wash after detritylation with 1% acetonitrile. This method has to be further optimized in order to reach a purity of at least 90% to be useful in industrial settings.
4

Synthesis and Reactivity of Cyclopentadienone Metal Complexes

Lydon, Evan January 2021 (has links)
No description available.
5

Experimental and Computational Studies for Various Organic Systems

Xia, Shijing 18 March 2008 (has links)
No description available.
6

Distance measurements using pulsed EPR : noncovalently bound nitroxide and trityl spin labels

Reginsson, Gunnar Widtfeldt January 2013 (has links)
The function of biomacromolecules is controlled by their structure and conformational flexibility. Investigating the structure of biologically important macromolecules can, therefore, yield information that could explain their complex biological function. In addition to X ray crystallography and nuclear magnetic resonance (NMR) methods, pulsed electron paramagnetic resonance (EPR) methods, in particular the pulsed electron electron double resonance (PELDOR) technique has, during the last decade, become a valuable tool for structural determination of macromolecules. Long range distance constraints obtained from pulsed EPR measurements, make it possible to carry out structural refinements on structures from NMR and X ray methods. In addition, EPR yields distance distributions that give information about structural flexibility. The use of EPR for structural studies of biomacromolecules requires in most cases site specific incorporation of paramagnetic centres known as spin labelling. To date, spin labelling nucleic acids has required complex spin labelling chemistry. The first application of a site directed and noncovalent spin labelling method for distance measurements on DNA is described. It is demonstrated that noncovalent spin labelling with a rigid spin label can afford detailed information on internal DNA dynamics using PELDOR. Furthermore, it is shown that noncovalent spin labelling can be used to study DNA protein complexes. PELDOR can also yield information about spin label orientation. Therefore, spin labels with limited flexibility can be used to measure the relative orientation of the spin labelled sites. Although information on orientation can be obtained from 9.7 GHz PELDOR measurements in selected applications, measurements at 97 GHz or higher, increases orientation selection. It is shown that PELDOR measurements on semi rigid and rigid nitroxide biradicals using a home built high power 97 GHz EPR spectrometer (Hiper) and model based simulations yield quantitative information on spin label orientations and dynamics. The most widely used spin labels for EPR studies on biomacromolecules are the aminoxyl (nitroxide) radicals. The major drawbacks of nitroxide spin labels include low sensitivity for distance measurements, fast spin spin relaxation in solution and limited stability in reducing environments. Carbon centered triarylmethyl (trityl) radicals have properties that could eliminate some of the limitations of nitroxide spin labels. To evaluate the use of trityl spin labels for nanometer distance measurements, models systems with trityl and nitroxide spin labels were measured using PELDOR and Double Quantum Coherence (DQC). This study shows that trityl spin labels yield reliable information on interlabel distances and dynamics, establishing the trityl radical as a viable spin label for structural studies on biomacromolecules.
7

Measuring nanometer-scale distances by high-field pulsed electron-electron double resonance using MnII spin labels / Mesure de distances nanométriques entre deux complexes de manganèse par PELDOR (Pulsed Electron-Electron Double Resonance) à haut champ

Demay-Drouhard, Paul 22 October 2015 (has links)
Au cours de ce travail, une série de plateformes constituées d'un espaceur central connecté à deux complexes de MnII à haut spin a été synthétisée. De nombreux ligands ont été étudiés et greffés sur un ensemble d'espaceurs de longueur variant entre 1,5 et 5,5 nm. La distance Mn-Mn a été mesurée avec succès par résonance paramagnétique électronique (RPE) impulsionnelle à haut champ en utilisant la méthode PELDOR (Pulsed Electron-Electron Double Resonance). L'emploi de complexes de MnII avec de faibles valeurs d'éclatement en champ nul (ECN) a permis d'améliorer la sensibilité de cette méthode. Pour les plateformes constituées d'un espaceur polyproline, un bon accord a été observé entre la distribution de la distance Mn-Mn obtenue par PELDOR et par dynamique moléculaire, mais des composantes plus courtes dans la distribution ont été détectées pour certains paramètres expérimentaux. Ces observations ont été rationalisées en tenant compte du terme pseudo-séculaire de l'Hamiltonien dipolaire, non négligeable pour les systèmes étudiés où les spins observés et détectés sont similaires. Lorsqu'un espaceur rigide est employé, l'interaction pseudo-séculaire est bien plus marquée, ce qui se traduit par une distribution de distances plus large que prévu par la dynamique moléculaire. L'étude de nouveaux centres paramagnétiques pour la méthode PELDOR comme les radicaux trityl persistants a également été entreprise. Le tenseur g de ces radicaux a été déterminé avec précision par RPE à haut champ en utilisant MnII comme référence. Des calculs de DFT (Density Functional Theory) ont été effectués pour comprendre la relation entre la structure et le spectre RPE de ces radicaux trityl. / In this work, the synthesis of a set of platforms that incorporate a central linker of varying length connected to two high-spin MnII complexes has been performed. Several ligands were screened and efficient synthetic methodologies were developed to graft them on various spacers covering the 1.5 – 5.5 nm range. The Mn-Mn distance has been successfully measured using high-field pulsed electron paramagnetic resonance (EPR) spectroscopy, more precisely pulsed electron-electron double resonance (PELDOR). We showed that the use of MnII complexes with low zero-field splitting (ZFS) parameters led to an improved sensitivity. For flexible polyproline-based platforms, distances and distribution profiles obtained with PELDOR were in good agreement with molecular dynamics (MD) estimations, but additional features in the distance distributions could be observed under specific conditions. These finding were rationalized by taking into account the pseudo-secular term of the dipolar Hamiltonian, which was found to be non-negligible for the studied platforms, where pumped and detected spins are very similar. When the linker was rigid, the influence of the pseudo-secular interaction was much more prominent, leading to distance profiles with a higher width than predicted by MD calculations. Other emergent spin labels for pulsed EPR-based distance measurements such as persistent substituted trityl radicals were studied and their g-tensor was accurately measured using high-field EPR with MnII as an internal reference. Density functional theory (DFT) calculations were performed to understand the relationship between the structure and the EPR properties of the studied trityl radicals.

Page generated in 0.0556 seconds