Spelling suggestions: "subject:"trustregion methods"" "subject:"brustregion methods""
1 |
Filter-Trust-Region Methods for Nonlinear OptimizationSainvitu, Caroline 17 April 2007 (has links)
This work is concerned with the theoretical study and the implementation of algorithms for solving two particular types of nonlinear optimization problems, namely unconstrained and simple-bound constrained optimization problems. For unconstrained optimization, we develop a new algorithm which uses a filter technique and a trust-region method in order to enforce global convergence and to improve the efficiency of traditional approaches. We also analyze the effect of approximate first and second derivatives on the performance of the filter-trust-region algorithm. We next extend our algorithm to simple-bound constrained optimization problems by combining these ideas with a gradient-projection method. Numerical results follow the proposed methods and indicate that they are competitive with more classical trust-region algorithms.
|
2 |
Power System State Estimation and Contingency Constrained Optimal Power Flow - A Numerically Robust ImplementationPajic, Slobodan 01 May 2007 (has links)
The research conducted in this dissertation is divided into two main parts. The first part provides further improvements in power system state estimation and the second part implements Contingency Constrained Optimal Power Flow (CCOPF) in a stochastic multiple contingency framework. As a real-time application in modern power systems, the existing Newton-QR state estimation algorithms are too slow and too fragile numerically. This dissertation presents a new and more robust method that is based on trust region techniques. A faster method was found among the class of Krylov subspace iterative methods, a robust implementation of the conjugate gradient method, called the LSQR method. Both algorithms have been tested against the widely used Newton-QR state estimator on the standard IEEE test networks. The trust region method-based state estimator was found to be very reliable under severe conditions (bad data, topological and parameter errors). This enhanced reliability justifies the additional time and computational effort required for its execution. The numerical simulations indicate that the iterative Newton-LSQR method is competitive in robustness with classical direct Newton-QR. The gain in computational efficiency has not come at the cost of solution reliability. The second part of the dissertation combines Sequential Quadratic Programming (SQP)-based CCOPF with Monte Carlo importance sampling to estimate the operating cost of multiple contingencies. We also developed an LP-based formulation for the CCOPF that can efficiently calculate Locational Marginal Prices (LMPs) under multiple contingencies. Based on Monte Carlo importance sampling idea, the proposed algorithm can stochastically assess the impact of multiple contingencies on LMP-congestion prices.
|
3 |
Multilevel optimization in infinity norm and associated stopping criteria / Optimisation multiniveaux en norme infinie et critères d’arrêt associésMouffe, Mélodie 10 February 2009 (has links)
Cette thèse se concentre sur l'étude d'un algorithme multi niveaux de régions de confiance en norme infinie, conçu pour la résolution de problèmes d'optimisation non linéaires de grande taille pouvant être soumis a des contraintes de bornes. L'étude est réalisée tant sur le plan théorique que numérique. L'algorithme RMTR8 que nous étudions ici a été élaboré a partir de l'algorithme présente par Gratton, Sartenaer et Toint (2008b), et modifie d'abord en remplaçant l'usage de la norme Euclidienne par une norme infinie, et ensuite en l'adaptant a la résolution de problèmes de minimisation soumis a des contraintes de bornes. Dans un premier temps, les spécificités du nouvel algorithme sont exposées et discutées. De plus, l'algorithme est démontré globalement convergent au sens de Conn, Gould et Toint (2000), c'est-a-dire convergent vers un minimum local au départ de tout point admissible. D'autre part, il est démontre que la propriété d'identification des contraintes actives des méthodes de régions de confiance basées sur l'utilisation d'un point de Cauchy peut être étendue a tout solveur interne respectant une décroissance suffisante. En conséquence, cette propriété d'identification est aussi respectée par une variante particulière du nouvel algorithme. Par la suite, nous étudions différents critères d'arrêt pour les algorithmes d'optimisation avec contraintes de bornes afin de déterminer le sens et les avantages de chacun, et ce pour pouvoir choisir aisément celui qui convient le mieux a certaines situations. En particulier, les critères d'arrêts sont analyses en termes d'erreur inverse (backward erreur), tant au sens classique du terme (avec l'usage d'une norme produit) que du point de vue de l'optimisation multicritères. Enfin, un algorithme pratique est mis en place, utilisant en particulier une technique similaire au lissage de Gauss-Seidel comme solveur interne. Des expérimentations numériques sont réalisées sur une version FORTRAN 95 de l'algorithme. Elles permettent d'une part de définir un panel de paramètres efficaces par défaut et, d'autre part, de comparer le nouvel algorithme a d'autres algorithmes classiques d'optimisation, comme la technique de raffinement de maillage ou la méthode du gradient conjugue, sur des problèmes avec et sans contraintes de bornes. Ces comparaisons numériques semblent donner l'avantage à l'algorithme multi niveaux, en particulier sur les cas peu non-linéaires, comportement attendu de la part d'un algorithme inspire des techniques multi grilles. En conclusion, l'algorithme de région de confiance multi niveaux présente dans cette thèse est une amélioration du précédent algorithme de cette classe d'une part par l'usage de la norme infinie et d'autre part grâce a son traitement de possibles contraintes de bornes. Il est analyse tant sur le plan de la convergence que de son comportement vis-à-vis des bornes, ou encore de la définition de son critère d'arrêt. Il montre en outre un comportement numérique prometteur. / This thesis concerns the study of a multilevel trust-region algorithm in infinity norm, designed for the solution of nonlinear optimization problems of high size, possibly submitted to bound constraints. The study looks at both theoretical and numerical sides. The multilevel algorithm RMTR8 that we study has been developed on the basis of the algorithm created by Gratton, Sartenaer and Toint (2008b), which was modified first by replacing the use of the Euclidean norm by the infinity norm and also by adapting it to solve bound-constrained problems. In a first part, the main features of the new algorithm are exposed and discussed. The algorithm is then proved globally convergent in the sense of Conn, Gould and Toint (2000), which means that it converges to a local minimum when starting from any feasible point. Moreover, it is shown that the active constraints identification property of the trust-region methods based on the use of a Cauchy step can be extended to any internal solver that satisfies a sufficient decrease property. As a consequence, this identification property also holds for a specific variant of our new algorithm. Later, we study several stopping criteria for nonlinear bound-constrained algorithms, in order to determine their meaning and their advantages from specific points of view, and such that we can choose easily the one that suits best specific situations. In particular, the stopping criteria are examined in terms of backward error analysis, which has to be understood both in the usual meaning (using a product norm) and in a multicriteria optimization framework. In the end, a practical algorithm is set on, that uses a Gauss-Seidel-like smoothing technique as an internal solver. Numerical tests are run on a FORTRAN 95 version of the algorithm in order to define a set of efficient default parameters for our method, as well as to compare the algorithm with other classical algorithms like the mesh refinement technique and the conjugate gradient method, on both unconstrained and bound-constrained problems. These comparisons seem to give the advantage to the designed multilevel algorithm, particularly on nearly quadratic problems, which is the behavior expected from an algorithm inspired by multigrid techniques. In conclusion, the multilevel trust-region algorithm presented in this thesis is an improvement of the previous algorithm of this kind because of the use of the infinity norm as well as because of its handling of bound constraints. Its convergence, its behavior concerning the bounds and the definition of its stopping criteria are studied. Moreover, it shows a promising numerical behavior.
|
4 |
Numerical optimization for mixed logit models and an applicationDogan, Deniz 08 January 2008 (has links)
In this thesis an algorithm (MLOPT) for mixed logit models is proposed. Mixed logit models are flexible discrete choice models, but their estimation with large datasets involves the solution of a nonlinear optimization problem with a high dimensional integral in the objective function, which is the log-likelihood function. This complex structure is a general problem that occurs in statistics and optimization.
MLOPT uses sampling from the dataset of individuals to generate a data sample. In addition to this, Monte Carlo samples are used to generate an integration sample to estimate the choice probabilities. MLOPT estimates the log-likelihood function values for each individual in the dataset by controlling and adaptively changing the data sample and the size of the integration sample at each iteration. Furthermore, MLOPT incorporates statistical testing for the quality of the solution obtained within the optimization problem.
MLOPT is tested with a benchmark study from the literature (AMLET) and further applied to real-life applications in the automotive industry by predicting market shares in the Low Segment of the new car market. The automotive industry is particularly interesting in that understanding the behavior of buyers and how rebates affect their preferences is very important for revenue management.
Real transaction data is used to generate and test the mixed logit models developed in this study. Another new aspect of this study is that the sales transactions are differentiated with respect to the transaction type of the purchases made. These mixed logit models are used to estimate demand and analyze market share changes under different what-if scenarios. An analysis and discussion of the results obtained are also presented.
|
5 |
Um metodo do tipo lagrangiano aumentado com região de confiança / On augmented lagrangian methods with trust-regionCastelani, Emerson Vitor 13 August 2018 (has links)
Orientador: Jose Mario Martinez Perez / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T22:53:44Z (GMT). No. of bitstreams: 1
Castelani_EmersonVitor_D.pdf: 695936 bytes, checksum: 9434e07a75cde154320a5156daf73684 (MD5)
Previous issue date: 2009 / Resumo: Ao resolver problemas de programação não linear usando métodos do tipo Lagrangiano Aumentado, um fenômeno chamado voracidade pode ocorrer. Quando este fenômeno ocorre, o método busca pontos muito infactíveis com valor de função objetivo muito pequeno. Tais fatos ocorrem, em geral, na primeiras iterações e então, o parâmetro de penalidade precisa crescer excessivamente, tornado os subproblemas mal condicionados, prejudicando assim a convergência. Desta forma, o propósito deste trabalho é adicionar restrições de caixas adaptativas (região de confiança) a cada subproblema em cada iteração externa, de modo que, a distância entre dois iterando consecutivos das iterações externas é controlada. O novo método inibe a possibilidade do fenômeno de voracidade. Resultados de convergência, limitação de parâmetro de penalidade e exemplos numéricos são apresentados / Abstract: When we solve nonlinear programming problems by means of algorithms of kind of Augmented Lagrangian, a phenomenon called greediness may occur. Unconstrained minimizers attract the iterates at early stages of the calculations and, so, the penalty parameter needs to grow excessively, in such a way that ill-conditioning harms the overall convergence. In this sense, the proposal of this work is to add an adaptive artificial box constraint (trust-region) to the subproblem at every outer iteration, in such a way that the distance between consecutive outer iterates is controlled. The new method inhibits the possibility of greediness phenomenon. Convergence proofs and numerical examples are given / Doutorado / Otimização / Doutor em Matemática Aplicada
|
6 |
Continuous steepest descent path for traversing non-convex regionsBeddiaf, Salah January 2016 (has links)
In this thesis, we investigate methods of finding a local minimum for unconstrained problems of non-convex functions with n variables, by following the solution curve of a system of ordinary differential equations. The motivation for this was the fact that existing methods (e.g. those based on Newton methods with line search) sometimes terminate at a non-stationary point when applied to functions f(x) that do not a have positive-definite Hessian (i.e. ∇²f → 0) for all x. Even when methods terminate at a stationary point it could be a saddle or maximum rather than a minimum. The only method which makes intuitive sense in non-convex region is the trust region approach where we seek a step which minimises a quadratic model subject to a restriction on the two-norm of the step size. This gives a well-defined search direction but at the expense of a costly evaluation. The algorithms derived in this thesis are gradient based methods which require systems of equations to be solved at each step but which do not use a line search in the usual sense. Progress along the Continuous Steepest Descent Path (CSDP) is governed both by the decrease in the function value and measures of accuracy of a local quadratic model. Numerical results on specially constructed test problems and a number of standard test problems from CUTEr [38] show that the approaches we have considered are more promising when compared with routines in the optimization tool box of MATLAB [46], namely the trust region method and the quasi-Newton method. In particular, they perform well in comparison with the, superficially similar, gradient-flow method proposed by Behrman [7].
|
7 |
Inexact Newton Methods Applied to Under-Determined SystemsSimonis, Joseph P 04 May 2006 (has links)
Consider an under-determined system of nonlinear equations F(x)=0, F:R^m→R^n, where F is continuously differentiable and m > n. This system appears in a variety of applications, including parameter-dependent systems, dynamical systems with periodic solutions, and nonlinear eigenvalue problems. Robust, efficient numerical methods are often required for the solution of this system. Newton's method is an iterative scheme for solving the nonlinear system of equations F(x)=0, F:R^n→R^n. Simple to implement and theoretically sound, it is not, however, often practical in its pure form. Inexact Newton methods and globalized inexact Newton methods are computationally efficient variations of Newton's method commonly used on large-scale problems. Frequently, these variations are more robust than Newton's method. Trust region methods, thought of here as globalized exact Newton methods, are not as computationally efficient in the large-scale case, yet notably more robust than Newton's method in practice. The normal flow method is a generalization of Newton's method for solving the system F:R^m→R^n, m > n. Easy to implement, this method has a simple and useful local convergence theory; however, in its pure form, it is not well suited for solving large-scale problems. This dissertation presents new methods that improve the efficiency and robustness of the normal flow method in the large-scale case. These are developed in direct analogy with inexact-Newton, globalized inexact-Newton, and trust-region methods, with particular consideration of the associated convergence theory. Included are selected problems of interest simulated in MATLAB.
|
8 |
Sobre o uso de regiões de confiança para minimização com restrições lineares / On trust-region algorithms for linearly constrained minimizationXavier, Larissa Oliveira, 1983- 11 September 2011 (has links)
Orientadores: Sandra Augusta Santos, José Mário Martinez Pérez / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T09:49:40Z (GMT). No. of bitstreams: 1
Xavier_LarissaOliveira_D.pdf: 21963947 bytes, checksum: 9419832d56a36ea9d96e9f9d7e75ce57 (MD5)
Previous issue date: 2011 / Resumo: Neste trabalho apresentamos o estudo de dois algoritmos baseados em regiões de confiança para minimização de problemas suaves com restrições lineares. O primeiro algoritmo proposto, com uma estratégia de restrições ativas, foi desenvolvido a partir do trabalho de Gay. O segundo algoritmo apresentado explora a técnica de pontos interiores presente nos métodos de barreira. Ambos são acompanhados de respectivos resultados de boa definição e de convergência global e local. Os dois algoritmos foram testados para a resolução de problemas de distribuição de pontos em polígonos, utilizando o algoritmo de Rojas, Santos e Sorensen, livre de fatorações de matrizes, para resolver os subproblemas internos de região de confiança. O problema dos pontos no polígono não foi encontrado na literatura para o teste de algoritmos de otimização e pode ser visto como uma modificação do problema de distribuição de pontos em caixas, sugerido por Powell. Embora possua estrutura favorável para a geração de problemas com dimensão variável, e potencialmente de grande porte, no contexto livre de fatorações, trata-se de um problema difícil e desafiador, com uma grande quantidade de minimizadores locais. Experimentos numéricos comparativos entre as propostas foram feitos e analisados, indicando que os algoritmos são efetivos na obtenção de pontos estacionários de segunda ordem, com ligeira vantagem para o desempenho do algoritmo baseado em restrições ativas, em termos do tempo computacional empregado / Abstract: In this work two trust-region-based algorithms are analyzed for linearly constrained minimization. The first one is an active-set method, based on Gay's ideas. The second one uses interior-point techniques of barrier methods. Both algorithms are proved to be well defined and accompanied by the respective convergence results. The implementation was developed resting upon Rojas, Santos and Sorensen matrix-free algorithm for solving the inner trust-region subproblems. The family of adopted test-problems involves the distribution of points in a polygon, a modification of Powell's problem of distributing points in a square. Despite its favorable structure for generating instances with variable and potentially large dimension, in the matrix-free context, the problem is indeed hard and challenging, with many local minimizers. Comparative computational experiments illustrate the performance of the proposed algorithms, showing that both are effective to obtain second-order stationary points, with a slight advantage of the active-set-based algorithm when it comes to the CPU time spent / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
Page generated in 0.0856 seconds