• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 62
  • 27
  • 21
  • 13
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 2
  • Tagged with
  • 360
  • 360
  • 139
  • 132
  • 107
  • 103
  • 101
  • 87
  • 84
  • 74
  • 56
  • 55
  • 51
  • 47
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Identificação de moduladores genéticos em uma grande família com neoplasia endócrina múltipla (NEM1) / Identification of modifying genetic fatctors in a large family with multiple endocrine neoplasia type 1

Longuini, Viviane Cristina 18 March 2011 (has links)
A Neoplasia endócrina múltipla tipo 1 (NEM1; OMIM 131100) é uma síndrome endócrina hereditária, que envolve tumores nas glândulas paratireóides, pâncreas endócrino/duodeno e hipófise. Mutações germinativas no gene supressor de tumor MEN1 são identificadas em aproximadamente 80% dos casos familiais. Os casos restantes podem apresentar grandes deleções no gene MEN1 (raras), não identificáveis ao seqüenciamento direto, ou mutações em outros genes, ainda pouco conhecidos. Recentemente, mutações germinativas em genes que codificam quinases dependentes de ciclinas, como o gene supressor de tumor p27Kip1, foram identificadas em cerca de 1-2% dos pacientes NEM1 sem mutação no gene MEN1. Esses pacientes apresentam uma clínica similar à NEM1, sendo chamada de NEM-like ou NEM4. Estudos in vitro mostraram que a proteína codificada pelo gene MEN1, MENIN, controla a expressão gênica de p27Kip1, indicando que ambos os genes fazem parte da mesma via celular supressora de tumor. Devido à correlação genótipo-fenótipo ser muito fraca nessa síndrome e à grande variabilidade fenotípica encontrada em pacientes com NEM1 (mesmo entre indivíduos/familiares que possuem mesma mutação no gene MEN1), no presente estudo investigamos a hipótese do envolvimento do gene p27Kip1, e de outro gene supressor de tumor recentemente associado com um fenótipo tumores hipofisários famílias, o gene AIP, como possíveis moduladores de fenótipo entre os pacientes com NEM1 de uma extensa família brasileira com a mutação germinativa MEN1 c.308delC e ampla variabilidade fenotípica. Dentre uma série de variáveis clínicas investigadas, observamos um possível papel modulador de fenótipo do gene p27Kip1 nesta família com NEM1. Foi encontrada associação significante entre o genótipo do polimorfismo p.V109G do gene p27Kip1, localizado em um domínio de ligação com a proteína p38 (que é um regulador negativo de p27 por levar à degradação dessa proteína), com os seguintes aspectos clínicos: maior agressividade do tumor hipofisário (macro vs. microadenomas), precocidade no desenvolvimento do tumor pancreático, e presença de carcinóides e metástases nos pacientes analisados (p< 0,05). Não foi observada nenhuma associação do gene AIP e o fenótipo dos pacientes com NEM1. O presente estudo investigou, pela primeira vez, o status germinativo do gene p27Kip1 em pacientes com mutação MEN1 e identificou uma associação significante em relação à susceptibilidade e agressividade dos tumores na coorte estudada / Multiple endocrine neoplasia type 1 (MEN1) is an inherited tumoral syndrome that involves tumors in the parathyroids, anterior pituitary and in the pancreatic islet(s) cells. Germline mutations in the tumor suppressor gene MEN1 are detectable through direct sequencing in the majority (80%) of the patients with familial MEN1. The remaining patients may present large MEN1 gene deletions, not detectable through direct sequencing, or mutations in other genes, so far largely unknown. Recently, rare mutations in genes that encode cyclin-dependent kinases, as p27Kip1, have been reported in approximately 1-2% of the patients without a MEN1 mutation. These patients were reported as presenting a MEN1-like (or the MEN4) syndrome phenotype. In vitro studies have demonstrated that the protein encoded by the MEN1 gene, MENIN, controls the expression of the p27Kip1 gene and, therefore, these two genes seem to act in the same intracellular tumor suppressor pathway. Due to the lack of genotype-phenotype correlation in MEN1 and the large clinical variability usually observed within unrelated patients carrying the same MEN1 mutation, we hypothesized that p27Kip1 (as well as AIP gene, recently associated with familial predisposition to pituitary tumors) may act as phenotypic modifying gene(s) in the MEN1 syndrome. Herein, we analyzed possible correlations between p27Kip1 genotype and a number of clinical features. We identified significant statistic associations between the p.V109G p27Kip1 polymorphism and phenotype manifestations, indicating a potential role of p27Kip1 in modifying MEN1 phenotype, as follows: pituitary tumor size; early development of pancreatic tumors, and presence of carcinoids and metastasis (p< 0,05). In addition, a possible association with the AIP gene was excluded. The present study analyzed, for the first time, the germline status of p27Kip1 gene in MEN1-mutated patients and identified a potential interaction between the genotype of this tumor suppressor gene in regulating susceptibility and the tumor aggressiveness in MEN1 patients
172

Functional Analysis of Ing1 and Ing4 in Cell Growth and Tumorigenesis: a Dissertation

Coles, Andrew H. 02 May 2008 (has links)
The five member Inhibitor of Growth (ING) gene family has been proposed to participate in the regulation of cell growth, DNA repair, inflammation, chromatin remodeling, and tumor suppression. All ING proteins contain a PHD motif implicated in binding to methylated histones and are components of large chromatin remodeling complexes containing histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes, suggesting a role for ING proteins in regulating gene transcription. Additionally, forced overexpression studies performed in vitro have indicated that several ING proteins can interact with the p53 tumor suppressor protein and/or the NF-кB protein complex. Since these two proteins play well-established roles in numerous biological processes, several models have been proposed in the literature that ING proteins act as key regulators of cell growth and tumor suppression not only through their ability to modify gene transcription but also through their ability to alter p53 and NF-кB activity. However, these models have yet to be substantiated by in vivo experimentation. Research described in this dissertation utilizes a genetic approach to analyze the functional role of two ING proteins, Ing1b and Ing4, in regulating cell growth, inflammation, and tumorigenesis. Loss of p37Ing1b increased proliferation and DNA damage-induced apoptosis irrespective of p53 status in primary cells and mice. However, all other p53 responses were unperturbed. Additionally, p37Ing1b suppressed the formation of spontaneous follicular B-cell lymphomas in mice. Analysis of B-cells from these mice indicates that p37Ing1b inhibits the proliferation of B cells regardless of p53 status, and loss of p53 greatly accelerates the rate of B-cell lymphomagenesis in p37Ing1b-null mice, with double null mice presenting with aggressive diffuse large B-cell lymphomas (DLBL). Marker gene analysis in p37Ing1b/p53 null tumors indicates that these mice develop both non-germinal center and germinal center B cell-like DLBL, and also documents upregulation of NF-кB activity in both B-cells and tumors. Similarly, Ing4 -/- mice did not have altered p53 growth arrest or apoptosis, and did not develop spontaneous tumors. However, Ing4 -/- cells displayed reduced proliferation, and Ing4 -/- mice and macrophages were hypersensitive to treatment with LPS and exhibited decreased IкB gene expression and increased NF-кB activity. These studies demonstrate that Ing proteins can function to suppress spontaneous tumorigenesis and/or inflammatory responses without altering p53 activity, and identifies NF-кB as a biologically-relevant in vivo target of Ing1 and Ing4 signaling.
173

Identificação de moduladores genéticos em uma grande família com neoplasia endócrina múltipla (NEM1) / Identification of modifying genetic fatctors in a large family with multiple endocrine neoplasia type 1

Viviane Cristina Longuini 18 March 2011 (has links)
A Neoplasia endócrina múltipla tipo 1 (NEM1; OMIM 131100) é uma síndrome endócrina hereditária, que envolve tumores nas glândulas paratireóides, pâncreas endócrino/duodeno e hipófise. Mutações germinativas no gene supressor de tumor MEN1 são identificadas em aproximadamente 80% dos casos familiais. Os casos restantes podem apresentar grandes deleções no gene MEN1 (raras), não identificáveis ao seqüenciamento direto, ou mutações em outros genes, ainda pouco conhecidos. Recentemente, mutações germinativas em genes que codificam quinases dependentes de ciclinas, como o gene supressor de tumor p27Kip1, foram identificadas em cerca de 1-2% dos pacientes NEM1 sem mutação no gene MEN1. Esses pacientes apresentam uma clínica similar à NEM1, sendo chamada de NEM-like ou NEM4. Estudos in vitro mostraram que a proteína codificada pelo gene MEN1, MENIN, controla a expressão gênica de p27Kip1, indicando que ambos os genes fazem parte da mesma via celular supressora de tumor. Devido à correlação genótipo-fenótipo ser muito fraca nessa síndrome e à grande variabilidade fenotípica encontrada em pacientes com NEM1 (mesmo entre indivíduos/familiares que possuem mesma mutação no gene MEN1), no presente estudo investigamos a hipótese do envolvimento do gene p27Kip1, e de outro gene supressor de tumor recentemente associado com um fenótipo tumores hipofisários famílias, o gene AIP, como possíveis moduladores de fenótipo entre os pacientes com NEM1 de uma extensa família brasileira com a mutação germinativa MEN1 c.308delC e ampla variabilidade fenotípica. Dentre uma série de variáveis clínicas investigadas, observamos um possível papel modulador de fenótipo do gene p27Kip1 nesta família com NEM1. Foi encontrada associação significante entre o genótipo do polimorfismo p.V109G do gene p27Kip1, localizado em um domínio de ligação com a proteína p38 (que é um regulador negativo de p27 por levar à degradação dessa proteína), com os seguintes aspectos clínicos: maior agressividade do tumor hipofisário (macro vs. microadenomas), precocidade no desenvolvimento do tumor pancreático, e presença de carcinóides e metástases nos pacientes analisados (p< 0,05). Não foi observada nenhuma associação do gene AIP e o fenótipo dos pacientes com NEM1. O presente estudo investigou, pela primeira vez, o status germinativo do gene p27Kip1 em pacientes com mutação MEN1 e identificou uma associação significante em relação à susceptibilidade e agressividade dos tumores na coorte estudada / Multiple endocrine neoplasia type 1 (MEN1) is an inherited tumoral syndrome that involves tumors in the parathyroids, anterior pituitary and in the pancreatic islet(s) cells. Germline mutations in the tumor suppressor gene MEN1 are detectable through direct sequencing in the majority (80%) of the patients with familial MEN1. The remaining patients may present large MEN1 gene deletions, not detectable through direct sequencing, or mutations in other genes, so far largely unknown. Recently, rare mutations in genes that encode cyclin-dependent kinases, as p27Kip1, have been reported in approximately 1-2% of the patients without a MEN1 mutation. These patients were reported as presenting a MEN1-like (or the MEN4) syndrome phenotype. In vitro studies have demonstrated that the protein encoded by the MEN1 gene, MENIN, controls the expression of the p27Kip1 gene and, therefore, these two genes seem to act in the same intracellular tumor suppressor pathway. Due to the lack of genotype-phenotype correlation in MEN1 and the large clinical variability usually observed within unrelated patients carrying the same MEN1 mutation, we hypothesized that p27Kip1 (as well as AIP gene, recently associated with familial predisposition to pituitary tumors) may act as phenotypic modifying gene(s) in the MEN1 syndrome. Herein, we analyzed possible correlations between p27Kip1 genotype and a number of clinical features. We identified significant statistic associations between the p.V109G p27Kip1 polymorphism and phenotype manifestations, indicating a potential role of p27Kip1 in modifying MEN1 phenotype, as follows: pituitary tumor size; early development of pancreatic tumors, and presence of carcinoids and metastasis (p< 0,05). In addition, a possible association with the AIP gene was excluded. The present study analyzed, for the first time, the germline status of p27Kip1 gene in MEN1-mutated patients and identified a potential interaction between the genotype of this tumor suppressor gene in regulating susceptibility and the tumor aggressiveness in MEN1 patients
174

A Tale of Two ARFs: Tumor Suppressor and Anti-viral Functions of p14ARF: A Dissertation

Straza, Michael W. 21 May 2010 (has links)
Animals have evolved complicated and overlapping mechanisms to guard against the development of cancer and infection by pathogenic organisms. ARF, a potent tumor suppressor, positively regulates p53 by antagonizing p53’s negative regulator, MDM2, which in turn results in either apoptosis or cell cycle arrest. ARF also has p53-independent tumor suppressor activity. The CtBP transcriptional co-repressors promote cancer cell survival and migration/invasion. CtBP senses cellular metabolism via a regulatory dehydrogenase domain, and is a target for negative regulation by ARF. ARF targets CtBP to the proteasome for degradation, which results in the up regulation of proapoptotic BH3-only proteins, and p53-independent apoptosis. CtBP inhibition by ARF also up regulates PTEN, reducing cancer cell motility, making CtBP a potential therapeutic target in human cancer. The CtBP dehydrogenase substrate 4-methylthio-2-oxobutyric acid (MTOB) can act as a CtBP inhibitor at high concentrations, and is cytotoxic to cancer cells from a wide variety of tissues. MTOB induced apoptosis was independent of p53, and correlated with the de-repression of the pro-apoptotic CtBP repression target Bik. CtBP over-expression, or Bik silencing, rescued MTOB-induced cell death. MTOB did not induce apoptosis in mouse embryonic fibroblasts (MEFs), but was increasingly cytotoxic to immortalized and transformed MEFs, suggesting that CtBP inhibition may provide a suitable therapeutic index for cancer therapy. In human colon cancer cell peritoneal xenografts, MTOB treatment decreased tumor burden, and induced tumor cell apoptosis. To verify the potential utility of CtBP as a therapeutic target in human cancer the expression of CtBP and its negative regulator ARF was studied in a series of resected human colon adenocarcinomas. CtBP and ARF levels were inversely-correlated, with elevated CtBP levels (compared with adjacent normal tissue) observed in greater than 60% of specimens, with ARF absent in nearly all specimens exhibiting elevated CtBP levels. Targeting CtBP with a small molecule like MTOB may thus represent a useful and widely applicable therapeutic strategy in human malignancies. ARF has long been known to respond to virally encoded oncogenes. Recently, p14ARF was linked to the innate immune response to non-transforming viruses in mice. Therefore a wider role for the ARF pathway in viral infection was considered. Previous studies linking p53 to multiple points of the Human Immunodeficiency Virus-1 (HIV-1) life cycle suggested that ARF may also play a role in the HIV life cycle. In this study the interdependency of ARF and HIV infection was investigated. ARF expression was determined for a variety of cell types upon HIV infection. In every case, ARF levels exhibited dynamic changes upon HIV infection-in most cases ARF levels were reduced in infected cells. The impact of ARF over-expression or silencing by RNAi on HIV infection was also examined. Consistently, p24 levels were increased with ARF overexpression, and decreased when ARF was silenced. Thus ARF and HIV modulate each other, and ARF may paradoxically play a positive role in the HIV life cycle.
175

The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity

Hanschen, Erik R., Marriage, Tara N., Ferris, Patrick J., Hamaji, Takashi, Toyoda, Atsushi, Fujiyama, Asao, Neme, Rafik, Noguchi, Hideki, Minakuchi, Yohei, Suzuki, Masahiro, Kawai-Toyooka, Hiroko, Smith, David R., Sparks, Halle, Anderson, Jaden, Bakarić, Robert, Luria, Victor, Karger, Amir, Kirschner, Marc W., Durand, Pierre M., Michod, Richard E., Nozaki, Hisayoshi, Olson, Bradley J. S. C. 22 April 2016 (has links)
The transition to multicellularity has occurred numerous times in all domains of life, yet its initial steps are poorly understood. The volvocine green algae are a tractable system for understanding the genetic basis of multicellularity including the initial formation of cooperative cell groups. Here we report the genome sequence of the undifferentiated colonial alga, Gonium pectorale, where group formation evolved by co-option of the retinoblastoma cell cycle regulatory pathway. Significantly, expression of the Gonium retinoblastoma cell cycle regulator in unicellular Chlamydomonas causes it to become colonial. The presence of these changes in undifferentiated Gonium indicates extensive group-level adaptation during the initial step in the evolution of multicellularity. These results emphasize an early and formative step in the evolution of multicellularity, the evolution of cell cycle regulation, one that may shed light on the evolutionary history of other multicellular innovations and evolutionary transitions.
176

ID4 Acts as a Tumor Suppressor via p53: Mechanistic Insight

Morton, Derrick J, Jr. 16 May 2016 (has links)
Overexpression of tumor-derived mutant p53 is a common event in tumorigenesis, suggesting an advantageous selective pressure in cancer initiation and progression. Given that p53 is found to be mutated in 50% of all human cancers, restoration of mutant p53 to its wild type biological function has been a widely sought after avenue for cancer therapy. Most research efforts have largely focused on restoration of mutant p53 by artificial means given that p53 has some degree of conformational flexibility allowing for introduction of short peptides and artificial compounds. Recently, theoretical modeling and studies focused on restoration of mutant p53 by physiological means has raised the question of whether there are effective therapies worth exploring that focus on global physiological mechanisms of restoration of p53. Herein, we provide computational analysis of the thermodynamic stabilities of both wild-type and mutant p53 core domains by studying their respective minimum potential energies. Also, it is widely accepted that wild type p53 is modulated by various acetyl transferases as well as deactylases, but whether this mechanism of p53 modulation can be exploited for physiological restoration of mutant p53 remains under intense investigation. Using prostate cancer cell lines representative of varying stages of aggressiveness as a model, we show that ID4 dependent acetylation promotes mutant p53 DNA-binding capabilities to its wild type consensus sequence, thus regulating p53-dependent target genes leading to subsequent cell cycle arrest and apoptosis. Specifically, we identify that ID4 promotes acetylation of K373 and to a lesser extent K320, in turn regulating p53-dependent biological activities. Together, our data provides computational analysis of the core domain of certain mutant forms of p53 and a molecular understanding of ID4 dependent acetylation that suggests a strategy of enhancing p53 acetylation at sites K373 and K320, critical sites of post translational modification of p53, that may serve as a viable mechanism of physiological restoration of mutant p53 to its wild type biological function.
177

The role of hnRNP A1 and hnRNP C1/C2 in the regulation of the stress responsive genes Cyp2a5/2A6 and p53.

Christian, Kyle January 2008 (has links)
<p>The family of proteins known as heterogeneous nuclear ribonucleoproteins (hnRNPs) is large and diverse. Often, one and the same hnRNP will perform multiple cellular functions, leading to their description as “multifunctional proteins”. The two hnRNPs known as hnRNP A1 and hnRNP C1/C2 are multifunctional proteins found to affect the transcription, splicing, stability, and translation of specific genes’ mRNA. They are implicated in carcinogenesis, apoptosis, and DNA damage response mechanisms.</p><p>The aims of this thesis were to study the hnRNP A1 and hnRNP C1/C2 dependent regulation of two highly stress responsive genes, the tumor suppressor p53 and the cytochrome P450 enzyme <i>Cyp2a5/CYP2A6</i>. We identified hnRNP C1/C2 as a DNA damage induced binding protein towards the coding region of p53 mRNA, and found that while a specific <i>cis</i> binding site appears to have a positive function in p53 expression, interaction of hnRNP C1/C2 with this site represses the expression. The data suggest that two distinct molecular mechanisms exist for the down-regulation of p53 by hnRNP C1/C2. One mechanism, active during transcriptional stress, is dependent upon the aforementioned site, and the other, independent. We discuss how hnRNP C1/C2 dependent repression of p53 may play a role in apoptosis. </p><p>The data presented here further suggest that the transcriptional and post-transcriptional processes controlling the expression of the murine <i>Cyp2a5</i> gene are linked <i>via</i> hnRNP A1, by performing functions in the nucleus as a transcription factor, or in the cytoplasmic compartment as a <i>trans </i>factor bound to the 3’UTR of the mRNA as needed. Our studies of the human ortholog of this gene, <i>CYP2A6</i>, suggest that this gene is regulated post-transcriptionally in a manner similar to that of its murine counterpart, <i>via</i> changes in mRNA stability and interaction of hnRNP A1 with its 3’ UTR. </p>
178

Estudo funcional do gene PHLDA1 Pleckstrin Homology-like Domain, Family A, Member 1 em células epiteliais de mama, MCF10A / Functional study of PHLDA1 gene (Pleckstrin Homology-like Domain, Family A, Member 1) in breast epithelial cells, MCF10A

Bonatto, Naieli 29 November 2016 (has links)
O câncer de mama é a principal causa de morte por câncer entre as mulheres no mundo. Fatores genéticos, comportamentais e ambientais afetam o risco de aparecimento dessa doença e seu desenvolvimento e progressão ocorrem pelo acúmulo de alterações genéticas/epigenéticas que levam a manutenção de sinais proliferativos nas células, fuga dos agentes supressores de crescimento e resistência à morte celular. O gene PHLDA1 (de Pleckstrin Homology-Like Domain, Family A, Member 1) codifica uma proteína de 401 aminoácidos que já foi descrita envolvida em distintos processos biológicos incluindo morte celular e, dessa forma, é frequentemente associada ao câncer. Perda progressiva de PHLDA1 já foi descrita em melanoma primário e metastático enquanto sua superexpressão foi descrita para tumores intestinais e pancreáticos. Em dados prévios de nosso grupo de pesquisa o gene PHLDA1 foi encontrado diferencialmente expresso em tumores de mama onde sua ausência estava relacionada com sobrevida livre de doença e sobrevida global reduzidas nas pacientes. Estudos do gene PHLDA1 em linhagens de mama são escassos e a compreensão de seu papel funcional e de como sua ausência pode estar relacionada com a redução da sobrevida em pacientes com câncer de mama permanecem obscuros. Com o objetivo de compreender a função de PHLDA1 em células epiteliais de mama, nós investigamos os efeitos da supressão do gene PHLDA1 em células MCF10A. A redução da expressão foi alcançada a partir de transfecção das células com vetores plasmidiais contendo shRNAs específicos para o transcrito de PHLDA1 e subsequentemente foram realizados ensaios funcionais. A expressão diminuida de PHLDA1 foi capaz de induzir acentuadas alterações morfológicas e comportamentais nas células MCF10A, incluindo mudança no padrão de ancoragem célula-célula e reorganização nos filamentos de actina, além de maior taxa de proliferação, migração e invasão das células. Além disso, em condições de baixa ancoragem, as células com expressão reduzida de PHLDA1 apresentaram mamosferas de formato irregular em comparação às células controle. Em conjunto, nossos resultados mostram que a diminuição da expressão de PHLDA1 em células MCF10A está relacionada a um comportamento agressivo e acentuadas alterações morfológicas. Estes dados são consistentes com atividade supressora tumoral de PHLDA1 em células epiteliais de mama / Breast cancer is the leading cause of cancer death among women worldwide. Genetic, behavioral and environmental factors affect the risk of onset of the disease. Breast cancer development and progression involves the accumulation of genetic/epigenetic changes that lead to maintenance of proliferative signals, evasion of growth suppressors and resistance to cell death. The PHLDA1 gene (Pleckstrin Homology-like domain, Family A, member 1) encodes a 401 amino acids protein that has been described involved in different biological processes including cell death and thus, is often associated with cancer. Progressive loss of PHLDA1 has been described in primary and metastatic melanoma while their overexpression has been reported for intestinal and pancreatic tumors. In previous data from our research group the PHLDA1 gene was found differentially expressed in breast tumors where its downregulation was related to shorter disease-free survival and overall survival of the patients. Literature regarding PHLDA1 in mammary epithelial cell lines is scarce and the understanding of their functional role and how its downregulation can be related to poor prognosis in breast cancer patients remain unclear. In order to understand the PHLDA1 function in breast epithelial cells, we investigated the effects of downregulation of PHLDA1 in MCF10A cells. The reduced expression was achieved from transfection of cells with plasmid vectors containing shRNAs for the specific transcript of PHLDA1 followed by functional assays. The decreased expression of PHLDA1 was sufficient to induce marked morphological and behavioral changes in MCF10A cells, including changes in cell-to-cell attachment pattern and actin reorganization, increased proliferation, migration and invasion rate of cells. Furthermore, in independent of attachment condition, cells with reduced expression of PHLDA1 formed mammospheras whit irregular shape compared to control cells. Taken together, our results showed that the decreased expression of PHLDA1 in MCF10A cells is related to aggressive behavior and marked morphological changes. These data are consistent with tumor suppressor activity for PHLDA1 in breast epithelial cells
179

Papel da expressão celular e extracelular do Par-4 na formação tumoral e sensibilidade a droga / Role of cellular and extra-cellular Par-4 expression in tumor formation and drug sensitivity

Oliveira Filho, Lourival Antunes de 11 May 2017 (has links)
O câncer de mama é o tumor mais incidente e a principal causa de mortalidade entre as mulheres no mundo. Não diferente de tantos outros tipos tumorais, o câncer de mama carrega em sua história uma etiologia complexa, heterogênea e multifatorial. O gene pró-apoptótico PAWR (PKC apoptosis WT1 regulator; também denominado como PAR-4, Prostate Apoptosis Response-4) é conhecido por induzir seletivamente apoptose em uma grande variedade de células de câncer. O papel de Par-4 como supressor tumoral vem sendo bem estabelecido nos últimos anos. Entretanto, pouco tem sido explorado sobre o papel e os mecanismos envolvendo a função supressora de Par-4 em câncer de mama. Em estudos prévios do nosso grupo, foi possível demonstrar que a expressão reduzida de Par-4 está associada a um pior prognóstico em câncer de mama e que esta proteína pode ter um papel importante na morfogênese da glândula mamária. Além disso, a investigação em células MCF-7 demostrou que a expressão de Par-4 aumenta a sensibilidade das células ao tratamento com docetaxel. Com objetivo de entender melhor o papel de Par-4 em células tumorais de mama, nós investigamos o efeito da supressão de Par-4 nas células MDA-MB-231 in vitro e in vivo. A redução da expressão foi alcançada a partir de transfecção das células com vetores plasmidiais contendo shRNAs específicos para o transcrito de Par-4 e subsequentemente foram realizados ensaios funcionais. A expressão reduzida de Par-4 foi capaz de aumentar a capacidade de formação de colônias das células MDA-MB-231 em cultura. Além disso, as células MDA-MB-231 transfectadas com shRNA-Par-4 tiveram uma redução significativa da morte celular (fase sub-G0\\G1 do ciclo celular), em particular da morte por apoptose (Anexina-FITC/PI), após o tratamento com diferentes quimioterápicos. Em nosso estudo, as células MDA-MB-231-Controle tratadas com docetaxel apresentaram aumento nos níveis de Par-4 secretado, o que não foi observado nas células MDA-MB-231-shPar-4. Finalmente, nossos resultados in vivo sugerem que a expressão diminuída de Par-4 pode modular o crescimento tumoral em camundongos Balb/c NUDE. Em conjunto, nossos dados colaboram com o papel supressor de Par-4 já descrito na literatura e confirmam sua ação supressora em diferentes linhagens de câncer de mama / Breast cancer is the most incident tumor and the leading cause of mortality among women worldwide. Like other forms of cancer, breast cancer has a complex, heterogeneous and multifactorial etiology. The pro-apoptotic gene PAWR (PKC apoptosis WT1 regulator; also known as PAR-4, Prostate Apoptosis Response-4) is known to selectively induce apoptosis in a wide variety of cancer cells. The role of Par- 4 as a tumor suppressor has been well established in recent years. However, little has been explored about the role and mechanisms of Par-4 suppressor function in breast cancer. Previous work from our research group demonstrated that the reduced expression of Par-4 is associated with a worse prognosis in breast cancer. Also an important role of Par-4 in the morphogenesis of the mammary gland was suggested. In addition, Par-4 overexpression in MCF-7 cells increased the sensitivity to docetaxel treatment. In order to better understand the role of Par-4 in breast tumor cells, we investigated the effect of Par-4 knock-down on MDA-MB-231 cells in vitro and in vivo. We performed shRNA-mediated Par-4 knockdown, and then carried out functional assays. The reduced expression of Par-4 was able to increase the colony formation capacity of MDA-MB-231 cells in culture. In addition, shRNA-Par-4 transfection in MDA-MB-231 cells led to a significant reduction of cell death (sub-G0/G1 cell cycle), particularly by apoptosis (Annexin-FITC/PI), after treatment with different chemotherapeutic agents. In our study, docetaxel-treated MDA-MB-231-Control cells showed increased levels of secreted Par-4, which was not observed in MDA-MB-231- shPar-4 cells. Finally, our in vivo results suggest that diminished Par-4 expression may modulate tumor growth in Balb/c NUDE mice. Taken together, our data support the suppressor role of Par-4 already described in the literature and confirm its suppressive action in different breast cancer cell lines
180

Identification of candidate tumor suppressor genes at 11q for nasopharyngeal and esophageal carcinoma.

January 2007 (has links)
Wang, Yajun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 118-126). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.v / Table of Contents --- p.vi / List of Figures --- p.xi / List of Tables --- p.xii / Abbreviations and Symbols --- p.xiii / List of Publications and Sequence Submissions during the Study --- p.xv / Chapter Chapter One: --- General Introduction --- p.1 / Chapter Chapter Two: --- Literature Review --- p.8 / Chapter 2.1 --- DNA methylation --- p.8 / Chapter 2.1.1 --- Epigenetic changes --- p.8 / Chapter 2.1.2 --- Differential methylation pattern in normal and tumor cells --- p.10 / Chapter 2.2 --- TSGs --- p.13 / Chapter 2.2.1 --- "Cancer initiation, progression and cancer genes" --- p.13 / Chapter 2.2.2 --- TSGs could be inactivated through promoter hypermethylation --- p.14 / Chapter 2.3 --- NPC --- p.17 / Chapter 2.3.1 --- Epidemiology ofNPC --- p.18 / Chapter 2.3.2 --- Molecular genetic and epigenetic studies ofNPC --- p.19 / Chapter 2.3.3 --- NPC and chromosome 11q --- p.21 / Chapter 2.4 --- ESCC --- p.21 / Chapter 2.4.1 --- Epidemiology of ESCC --- p.22 / Chapter 2.4.2 --- Genetic and epigenetic studies of ESCC --- p.23 / Chapter 2.4.3 --- ESCC and chromosome 11q --- p.24 / Chapter 2.5 --- Chromosome 11q and other carcinomas --- p.24 / Chapter 2.5.1 --- Breast cancer --- p.24 / Chapter 2.5.2 --- Ovarian cancer --- p.25 / Chapter 2.5.3 --- Neuroblastoma --- p.26 / Chapter 2.5.4 --- Melanoma --- p.27 / Chapter 2.5.5 --- Multiple myeloma --- p.27 / Chapter 2.5.6 --- Lung Cancer --- p.27 / Chapter 2.6 --- Important candidate genes located at the project study 1 lq region --- p.28 / Chapter 2.6.1 --- ETS1 --- p.28 / Chapter 2.6.2 --- FLI1 --- p.29 / Chapter 2.6.3 --- P53AIP1 --- p.30 / Chapter 2.6.4 --- RICS --- p.30 / Chapter 2.6.5 --- BARX2 --- p.30 / Chapter 2.6.6 --- ST14 --- p.32 / Chapter 2.6.7 --- ADAMTS8 --- p.33 / Chapter 2.6.8 --- ADAMTS15 --- p.35 / Chapter 2.6.9 --- HNT --- p.36 / Chapter 2.6.10 --- OPCML --- p.36 / Chapter Chapter Three: --- Materials and Methods --- p.37 / Chapter 3.1 --- Cell lines and primary tumor samples --- p.37 / Chapter 3.2 --- Cell line demethylation treatment --- p.38 / Chapter 3.3 --- DNA and RNA extraction from cell lines and tissues --- p.39 / Chapter 3.4 --- Semiquantitative RT-PCR --- p.41 / Chapter 3.5 --- DNA bisulfite treatment --- p.42 / Chapter 3.6 --- Promoter analysis and identification of 5' CpG islands of target genes --- p.45 / Chapter 3.7 --- Methylation-Specific PCR (MSP) --- p.45 / Chapter 3.8 --- Bisulfite Genomic Sequencing (BGS) --- p.46 / Chapter 3.8.1 --- BGS PCR reaction --- p.46 / Chapter 3.8.2 --- TA cloning of the PCR products into the sequencing vector --- p.47 / Chapter 3.8.3 --- Plasmid mini-preparation on 96-well plate --- p.48 / Chapter 3.8.4 --- Plasmid sequencing --- p.49 / Chapter 3.9 --- Homozygous deletion detection --- p.50 / Chapter 3.10 --- Construction of expression plasmids --- p.51 / Chapter 3.10.1 --- The strategy of full length cDNA cloning --- p.51 / Chapter 3.10.2 --- Obtaining of full length covered cDNA by cloning PCR --- p.53 / Chapter 3.10.3 --- Ligation and transformation --- p.54 / Chapter 3.10.4 --- Mini preparation of plasmid in Eppendorf tubes --- p.54 / Chapter 3.10.5 --- Verification of correct inserts in the plasmid --- p.55 / Chapter 3.10.6 --- Subcloning --- p.55 / Chapter 3.10.7 --- Bacteria storage --- p.57 / Chapter 3.11 --- Colony formation assays (CFA) --- p.57 / Chapter 3.11.1 --- Midiprep of the transfection grade plasmid --- p.57 / Chapter 3.11.2 --- Transfection --- p.58 / Chapter 3.11.3 --- Selection of the transfected cells with G418 --- p.59 / Chapter 3.11.4 --- Colony staining --- p.60 / Chapter 3.12 --- Statistical analysis --- p.60 / Chapter Chapter Four: --- Results --- p.61 / Chapter 4.1 --- Narrow down the candidate genes for further study --- p.61 / Chapter 4.1.1 --- Define the study chromosome region --- p.61 / Chapter 4.1.2 --- Database search of all candidate genes --- p.61 / Chapter 4.1.3 --- Transcriptional expression analysis of the candidate genes --- p.63 / Chapter 4.1.4 --- Selection of the genes with tumor specific expression downregulation for further intensive study --- p.64 / Chapter 4.2 --- Further characterization of ADAMTS8 --- p.69 / Chapter 4.2.1 --- Tissue transcriptional expression panel --- p.69 / Chapter 4.2.2 --- Semiquantitative RT-PCR results in tumor cell lines --- p.70 / Chapter 4.2.3 --- Promoter CpG island identification and promoter methylation study --- p.70 / Chapter 4.2.4 --- Transcription reactivation by demethylation treatment --- p.72 / Chapter 4.2.5 --- High resolution promoter methylation analysis by BGS --- p.72 / Chapter 4.2.6 --- Detection of homozygous deletion --- p.73 / Chapter 4.2.7 --- Analysis of ADAMTS8 promoter methylation in clinical samples --- p.74 / Chapter 4.2.8 --- ADAMTS8 full length cDNA cloning --- p.74 / Chapter 4.2.9 --- Colony formation assay --- p.75 / Chapter 4.3 --- Further characterization of HNT --- p.80 / Chapter 4.3.1 --- Tissue transcriptional expression panel --- p.80 / Chapter 4.3.2 --- Semiquantitative RT-PCR results in tumor cell lines --- p.80 / Chapter 4.3.3 --- Promoter CpG island identification and promoter methylation study --- p.81 / Chapter 4.3.4 --- Transcription reactivation by demethylation treatment --- p.82 / Chapter 4.3.5 --- HNT full length cDNA cloning --- p.82 / Chapter 4.4 --- Further characterization of BARX2 --- p.87 / Chapter 4.4.1 --- Tissue transcriptional expression panel --- p.87 / Chapter 4.4.2 --- Semiquantitative RT-PCR results in tumor cell lines --- p.87 / Chapter 4.4.3 --- Promoter CpG island identification and promoter methylation study --- p.88 / Chapter 4.4.4 --- Transcription reactivation by demethylation treatment --- p.89 / Chapter 4.4.5 --- BARX2 full length cDNA cloning --- p.89 / Chapter 4.5 --- Further study of other downregulated genes --- p.92 / Chapter 4.5.1 --- FLII --- p.92 / Chapter 4.5.2 --- ADAMTS15 --- p.94 / Chapter 4.5.3 --- P53AIP1 --- p.97 / Chapter Chapter Five: --- Discussion --- p.100 / Reference List --- p.118 / Appendix I: Reagents Preparation Recipe --- p.127 / Appendix II: PCR Primers for cDNA Cloning --- p.129

Page generated in 0.0509 seconds