• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 139
  • 35
  • 27
  • 27
  • 20
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 321
  • 85
  • 67
  • 46
  • 44
  • 38
  • 34
  • 33
  • 29
  • 28
  • 28
  • 25
  • 24
  • 24
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

A Smart Implementation of Turbo Decoding for Improved Power Efficiency

Jemibewon, Abayomi Oluwaseyi 20 July 2000 (has links)
Error correction codes are a means of including redundancy in a stream of information bits to allow the detection and correction of symbol errors during transmission. The birth of error correction coding showed that Shannon's channel capacity could be achieved when transmitting information through a noisy channel. Turbo codes are a very powerful form of error correction codes that bring the performance of practical coding even closer to Shannon's theoretical specifications. Bit-error-rate (BER) performance and power dissipation are two important measures of performance used to characterize communication systems. Subject to the law of diminishing returns, as the resolution of the analog-to-digital converter (ADC) in the decoder increases, BER improves, but power dissipation increases. The number of decoding iterations has a similar effect on the BER performance and power dissipation of turbo coded systems. This is significant since turbo decoding is typically practiced in a fixed iterative manner, where all transmitted frames go through the same number of iterations. This is not always necessary since certain "good" frames would converge to their final bits within a few iterations, and other "bad" frames never do converge. In this thesis, we investigate the technical feasibility of adapting the resolution of the ADC in the decoder, and the number of decoding iterations, in order to obtain the best trade-off possible between BER performance and power dissipation in a communication system. With the aid of computer-aided simulations, this thesis investigates the performance and practical implementation issues associated with incorporating a variable resolution ADC into the decoder structure of turbo codes. The possibility of further power conservation resulting from reduced decoding computation is also investigated with the use of a recently developed iterative stopping criterion. / Master of Science
92

New Methods to Reduce Turbo Decoding Latency and the Complexity of Bit Insertion Techniques

AlMahamdy, Mohammed A. H. 12 June 2017 (has links)
No description available.
93

Unsteady Turbomachinery Flow Simulation With Unstructured Grids Using ANSYS Fluent

Longo, Joel Joseph January 2013 (has links)
No description available.
94

Turbo implementation of high dimensional trellis-coded modulation

Wang, Mingjing January 2001 (has links)
No description available.
95

Reduction of torsional oscillations in turbo-generator shafts with the use of a thyristor controlled resistor bank

Obiozor, Clarence Nwabunwanne January 1982 (has links)
No description available.
96

“Micro stream” a CAD package for streamlined extrusion dies utilizing a microcomputer

Jayasuriya, M. Janaka K. January 1985 (has links)
No description available.
97

Comparison and Analysis of Stopping Rules for Iterative Decoding of Turbo Codes

Cheng, Kai-Jen 29 July 2008 (has links)
No description available.
98

A Study on the Effects of Decoder Quantization of Digital Video Broadcasting - Return Channel over Satellite (DVB-RCS) Turbo Codes

Gorthy, Anantha Surya Raghu 29 December 2008 (has links)
No description available.
99

Genetic Optimization of Turbo Decoder

Allala, Prathyusha 25 April 2011 (has links)
No description available.
100

Permutation polynomial based interleavers for turbo codes over integer rings: theory and applications

Ryu, Jong Hoon 16 July 2007 (has links)
No description available.

Page generated in 0.0295 seconds