• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • 1
  • Tagged with
  • 15
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Échanges d’énergie et d’eau des écosystèmes nordiques dans un contexte de changement climatique

Payette, Fanny 12 1900 (has links)
Le réchauffement climatique affecte fortement les régions nordiques du Canada où le dégel du pergélisol discontinu à sa limite sud est accompagné du mouvement de la limite des arbres vers le nord en zone de pergélisol continu. Ces altérations faites aux paysages de la Taïga des Plaines sont le point de départ de plusieurs rétroactions puisque les changements apportés aux caractéristiques de la surface (au niveau de l’albédo, l’humidité du sol et la rugosité de la surface) vont à leur tour entraîner des modifications biophysiques et éventuellement influencer l’augmentation ou la diminution subséquente des températures et de l’humidité de l’air. Seulement, il y a un nombre important de facteurs d’influence qu’il est difficile de projeter toutes les boucles rétroactives qui surviendront avec les présents changements climatiques en régions nordiques. Dans le but de caractériser les échanges d’eau et d’énergie entre la surface et l’atmosphère de trois sites des Territoires du Nord-Ouest subissant les conséquences de l’augmentation des températures de l’air, la méthode micro-météorologique de covariance des turbulences fut utilisée en 2013 aux sites de Scotty Creek (forêt boréale et tourbière nordique en zone de pergélisol sporadique-discontinu), de Havikpak Creek (forêt boréale nordique en zone de pergélisol continu) et de Trail Valley Creek (toundra arctique en zone de pergélisol continu). En identifiant les procédés biotiques et abiotiques (ex. intensité lumineuse, disponibilité en eau, etc.) d’évapotranspiration aux trois sites, les contrôles par l’eau et l’énergie furent caractérisés et permirent ainsi de projeter une augmentation de la limitation en eau, mais surtout en énergie du site de Trail Valley Creek. La répartition de l’énergie projetée est semblable à celle de Havikpak Creek, avec une augmentation de la proportion du flux de chaleur sensible au détriment de celui latent suite aux modifications des caractéristiques de la surface (albédo, rugosité et humidité du sol). L’augmentation relative du flux d’énergie sensible laisse présager une boucle rétroactive positive de l’augmentation des températures de l’air à ce site. Ensuite, en comparant des données modelées de la hauteur de la couche limite planétaire et des données provenant de profils atmosphériques d’Environnement Canada entre les trois sites, les changements de hauteur de cette couche atmosphérique furent aussi projetés. Trail Valley Creek pourrait connaître une hausse de la hauteur de sa couche limite planétaire avec le temps alors que Scotty Creek connaîtrait une diminution de celle-ci. Ces changements au niveau des couches atmosphériques liés à la répartition des flux d’énergie dans les écosystèmes se répercuteraient alors sur le climat régional de façon difficile à déterminer pour l’instant. Les changements apportés désignent une boucle rétroactive positive des températures de l’air à Trail Valley Creek et l’inverse à Scotty Creek. Les deux axes d’analyse arrivent donc aux mêmes conclusions et soulignent aussi l’importance de l’influence mutuelle entre le climat et les caractéristiques spécifiques des écosystèmes à la surface. / Along the southern margin of permafrost, the boreal forest is underlain by ice-rich and relatively warm permafrost which is converted into permafrost-free peatlands and lake ecosystems due to warmer temperatures and increased thaw rates. At the same time, in the continuous permafrost zone the tree-line of the boreal forest is advancing northward into what is currently Arctic tundra. Both land cover changes in the Taiga Plains ecozone are affecting the magnitude of complex feedback loops, including regional biophysical feedbacks through altered net water vapor and heat exchanges caused by changes in land surface albedo, hydrology and surface roughness. Changes affecting the ecosystems are numerous and it is currently hard to estimate the direction (positive or negative) and magnitude of the resulting biophysical feedbacks. To improve our understanding of implications arising from land cover changes, the energy and water exchanges between surface and atmosphere at three sites in the Northwest Territories, Canada are characterized: Scotty Creek (boreal forest-peatland landscape with sporadic permafrost), Havikpak Creek (boreal forest with continuous permafrost) and Trail Valley Creek (tundra with continuous permafrost). The results of this study are based on measurements of water vapor and heat fluxes obtained with the eddy covariance technique, in addition to supporting ancillary measurements (e.g., net radiation, ground heat flux). For the growing season of 2013, biotic and abiotic controls (ex. light intensity, water availability, etc.) of evapotranspiration at the three sites were identified and analyzed leading to a projected increase in water and energy limitation for Trail Valley Creek. This limitation can be explained by increased energy repartition to sensible heat than to latent heat, following alterations of the land surface as the treeline moves towards the arctic tundra landscape. The relative increase in the sensible heat flux is an indication for an amplified positive feedback of rising air temperature. A comparison of modeled planetary boundary layer heights with Environment Canada atmospheric profiles for the sites leads to the same projection of a positive air temperature feedback. As the treeline moves north, at Trail Valley Creek, an increase of its planetary boundary layer is expected and the opposite phenomenon is expected at Scotty Creek. Albedo, hydrology and surface roughness will be modified, affecting energy partitioning and atmospheric layers which in turn will influence climate. The two methods have led to the same conclusion and highlight the importance of mutual influence between climate and land surface characteristics.
12

La synchronisation des cycles économiques entre pays avancés et pays émergents : couplage ou découplage ? / Business cycle synchronization between advanced countries and emerging countries : coupling or decoupling ?

Ibrahim Elgahry, Baher 12 December 2014 (has links)
AL’objectif de cette thèse est de tester la corrélation des cycles économiques entre les pays développés et les pays émergents, et de déterminer, en outre, l’importance relative des mécanismes causaux de la synchronisation/désynchronisation cyclique entre ces deux groupes de pays. Il s’agit notamment d’examiner comment les phases cycliques qui secouent les pays avancés se transmettent aux pays émergents. En étudiant les relations économiques entre les pays avancés et les pays émergents, nos résultats montrent qu’il existe une synchronisation cyclique entre les deux groupes de pays, mais aussi, en même temps, un découplage partiel des cycles conjoncturels entre un nombre limité de ces deux groupes de pays, notamment l’Inde et la Chine. Les circuits commerciaux et les canaux financiers sont les déterminants principaux de la synchronisation cyclique entre les pays développés et les pays émergents, en tenant compte d’une importance relative des facteurs financiers. Ce résultat nous a amené à analyser plus en profondeur les aspects financiers. Ainsi, on a étudié, en premier lieu, l’indice des turbulences financières. On observe qu’il existe une forte corrélation entre les troubles financiers des pays avancés et ceux des pays émergents. On a également testé, en second lieu, la synchronisation cyclique sous les différents régimes de change. On constate que les économies émergentes qui adoptent un régime de change intermédiaire sont les plus synchronisées, parce qu’il existe un lien entre corrélation cyclique et comportement des réserves de change. Ces dernières arrivent à leur pic dans un régime de change intermédiaire, ce qui est probablement dû aux relations intenses avec l’Europe et les Etats-Unis qui atteignent leur plus haut niveau sous un système intermédiaire de changes / The aim of this thesis is to analyze business cycles correlation between developed and emerging countries, and to determine the relative importance of causal mechanisms of synchronization/desynchronization between these two groups of countries. The business cycles across countries: divergence or convergence? How cyclical phases that shake the developed countries are transmitted to emerging countries ? By examining the economic relations between advanced and emerging countries, our results show that there is business cycles synchronization between the two groups of countries, but also at the same time, a partial decoupling of business cycles between a limited number of these two groups of countries, particularly India and China. Trade integration and financial channels are the main determinants of cyclical synchronization between developed countries and emerging economies, with a relative importance of the financial factors. This result led us to analyze, further, the financial aspects. Thus, we studied in the first place, the financial stress index. It is observed that there is a strong correlation between financial turmoil of developed countries and emerging countries. It was tested, in the second place, the cyclical synchronization under different exchange rate regimes. It appears that emerging economies that adopt an intermediate exchange rate regime are more synchronized because there is a link between their cyclical correlation and their international reserves behavior. These arrive at their peak under an intermediate exchange rate regime, probably due to the intense relations with Europe and the United States, which reach their highest level under an intermediate exchange rate system.
13

Piezoelectric Mirrors for Adaptive Optics in Space Telescopes

Alaluf, David 02 December 2016 (has links)
Future generations of space-based telescopes will require increasingly large primary reflectors, with very tight optical-quality tolerances. However, as their size grow, it becomes more and more difficult to meet the requirements, due to the manufacturing complexity and the associated costs. Chapters 2 and 3 propose two concepts of Adaptive Optics deformable mirrors, intended to be used as secondary corrector to compensate for manufacturing errors, gravity release and thermal distortion of large lightweight primary mirrors of space telescopes: (i) A scalable segmented bimorph mirror, based on independent PZT patches glued on Silicon wafers, providing a large number of degrees of freedom, a low mass while overcoming the problem of a low resonance mode; and (ii) A monolithic bimorph mirror, controlled by an array of independent electrodes, done by laser ablation on a single PZT patch. The modelling, the control strategy and the technological aspects are described. The performances of the manufactured prototypes are demonstrated experimentally. These prototypes have been developed in the framework of the ESA project, Bimorph Adaptive Large Optical Mirror Demonstrator (BIALOM). Chapter 4 introduces alternative designs, allowing to face the thermal distortion inherent to the bimorph architecture. They are compared in terms of stroke, voltage budget and first resonance frequency. These designs are required to be controlled in both directions using only positive voltages. Finally, the last chapter explores the feasibility of the shape control of a small size active thin shell reflector (with double curvature). The prototype is intended to be a technology demonstrator of a future large and very light active primary reflector. The behavior of the shell is studied through numerical simulations, and a preliminary design is proposed. This investigation is carried out in the framework of the ESA project: Multilayer Adaptive Thin Shell Reflectors (MATS). / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
14

Thawing permafrost and land-atmosphere interactions of boreal forest-wetland landscapes in northwestern Canada

Helbig, Manuel 03 1900 (has links)
Les forêts boréales stockent de grandes quantités de carbone organique et jouent un rôle important dans le climat planètaire. Le climat est étroitement associé à la surface terrestre à travers les flux de gaz à effet de serre, d’énergie et de vapeur d’eau. Dans la zone de pergélisol sporadique nord-américaine, l’affaissement du sol attribuable au dégel provoque l’expansion de milieux humides sans pergélisol remplaçant des forêts avec pergélisol. Cependant, l’étendue spatiale de ces changements et leurs conséquences sur le climat sont inconnues. Dans cette étude, j’analyse les flux turbulents d’un paysage comprenant des forêts boréales et des milieux humides dans la partie sud de la Taïga des plaines, T.N.-O., Canada. J’associe ces flux avec la modélisation d’empreintes de flux, des données satellite, des données paléoécologiques, et des projections climatiques afin de caractériser l’impact des changements de la couverture terrestre sur les interactions entre la terre et l’atmosphère. Dans la Taïga des plaines, la perte de forêt boréale attribuable au dégel est d’une importance égale à celle due aux feux de forêt. La perte de forêt modifie les flux turbulents d’énergie à travers des changements dans les propriétés aérodynamiques et écophysiologiques de la surface terrestre. L’accroissement de l’albédo cause de petites réductions dans la somme des flux turbulents de chaleur sensible (H) et de chaleur latente (LE)). La diminution de la rugosité et l’augmentation de l’humidité de la surface augmentent toutefois LE tout en réduisant H, ce qui mènerait à une baisse des températures estivales et à une augmentation de l’humidité de l’air, d’après des simulations réalisées à l’aide d’un modèle de la couche limite planétaire. Contrairement à l’effet biophysique de refroidissement du climat régional dû à la perte de couvert forestier, l’expansion des milieux humides et l’augmentation des émissions de méthane (CH4) provoque un réchauffement du climat. L’expansion des milieux humides dans la partie sud de la Taïga des plaines entraîne une augmentation des émissions de 0.034 g CH4 m-2 a-1. Les taux d’absorption de CO2 caractéristiques de ces paysages sont trop faibles pour neutraliser le réchauffement du climat dû aux émissions de CH4 d’ici la fin du 21ème siècle. Tout en dégelant rapidement, ces paysages boréaux restent des puits de CO2, absorbant 74 g CO2 m-2 a-1. L’expansion des milieux humides n’affecte pas les émissions nettes de CO2, les changements de la productivité primaire brute (PPB) et de la respiration de l’écosystème (RE) étant d’une magnitude similaire. Les répercussions négligeables sur les flux nets de CO2 sont largement compensées par les répercussions climatiques directes d’un réchauffement de la température de l’air. Un scénario de réchauffement élevé mène à un accroissement de RE dépassant significativement l’accroissement de PPB. Dans la Taïga des plaines, le dégel du pergélisol a donc des répercussions climatiques qui s’opposent aux plans biophysiques et biogéochimiques. Dans un climat plus chaud, le dégel modifie la façon dont les paysages interagissent avec le climat, ce qui souligne la nécessité d’intégrer les changements dans la couverture terrestre attribuable au dégel dans les modèles du système Terre. / Boreal forests store large amounts of organic carbon and are an important component of the regional and global climate systems. Climate and land surface are closely coupled through the land-atmosphere exchange of greenhouse gases, such as CO2 and CH4, and of energy and water vapor. In lowlands of the North American sporadic permafrost region, thaw-induced surface subsidence leads to expansion of permafrost-free wetlands at the expense of boreal forests underlain by permafrost. However, the spatial extent of these land cover changes and their implications for land-atmosphere interactions are unknown. In this study, I analyze eddy covariance flux measurements from an organic-rich boreal forest-wetland landscape in the southern Taiga Plains, NT, Canada. I combine these measurements with flux footprint modeling, satellite remote sensing data, paleoecological records, and downscaled climate projections to characterize how thaw-induced land cover change affects land-atmosphere interactions and climate. In the Taiga Plains ecozone, thaw-induced boreal forest loss currently transforms the composition and structure of the boreal zone in North America and is of equal importance for tree cover dynamics as wildfire disturbance. Forest loss modifies landatmosphere energy fluxes through changes in aerodynamic and ecophysiological land surface properties. On the one hand, increasing albedo decreases total turbulent energy fluxes (i.e., sensible (H) and latent heat (LE) flux), and on the other hand decreasing surface roughness and increasing wetness enhances LE at the expense of H. The resulting maximum summer air temperatures and humidity would be substantially colder (1-2 C) and wetter (2 mmol mol-1) in a hypothetical permafrost-free wetland landscape, as indicated by planetary boundary layer model simulations. In contrast to the regional biophysical climate cooling impact of thaw-induced land cover change, wetland expansion and related increases in landscape CH4 emissions induce a net global biogeochemical climate warming impact. At the current rate of wetland expansion in the southern Taiga Plains of 0.26 % yr-1, landscape CH4 emissions increase by 0.034 g CH4 m-2 yr-1. Typical rates of long-term net CO2 uptake in these landscapes are too small to neutralize the associated climate warming effect until the end of the 21st century. The rapidly thawing boreal forest-wetland landscape still acts as a net CO2 sink taking up 74 g CO2 m-2 yr-1. Wetland expansion does not affect landscape-level net CO2 uptake as changes in gross primary productivity (GPP) and ecosystem respiration (ER) are of similar magnitude. The negligible thaw-induced effects on net CO2 fluxes are contrasted by larger direct climate change impacts of warming air temperatures and reduced incoming shortwave radiation. For a high warming scenario (RCP8.5), increases in modeled ER outpace the increasing GPP significantly. For a moderate warming scenario (RCP4.5), ER and GPP increase are of similar magnitude. Thaw-induced land cover change in the Taiga Plains causes thus biophysical and biogeochemical climate impacts of opposite sign and at contrasting scales of impacts (regional vs. global). In an increasingly warmer climate, thawing permafrost alters how boreal landscapes interact with climate highlighting the need to incorporate thaw-induced land cover changes into global Earth system models.
15

Surface-atmosphere energy exchanges and their effects on surface climate and boundary layer dynamics in the forest-tundra ecotone in northwestern Canada

Graveline, Vincent 04 1900 (has links)
La région boréale arctique (RBA) couvre une vaste étendue qui lui confère un rôle important dans le système climatique mondial, par ses échanges d'énergie et de matière avec l'atmosphère. La température de l'air dans la région boréale arctique a augmenté à des taux disproportionnés par rapport à la moyenne mondiale, entraînant des changements dans la composition et la structure de la végétation. La RBA comprend l'écotone de la forêt boréale et de la toundra (EFT), qui s'étend sur plus de 10,000 km à travers l'hémisphère nord. La structure et la composition de la végétation varient considérablement à travers l’EFT. Du sud au nord, les arbres deviennent plus courts, plus dispersés et finalement absents. Ce gradient entraîne des variations dans la balance énergétique de surface. Ainsi, des changements dans la composition et la structure de la végétation dans l’EFT pourraient influencer le climat régional futur de ces régions. Ces changements régionaux pourraient se répercuter sur le climat mondial en interagissant avec le cycle du carbone par des changements dans les régimes de perturbations et la profondeur de la couche limite atmosphérique. L'objectif de cette étude était de développer un état des lieux de la variation latitudinale des interactions entre la surface et l’atmosphère et du climat régional à travers l’EFT dans le nord-ouest du Canada. Nous avons utilisé des mesures de covariance des turbulences provenant d’une forêt subarctique en marge de l’EFT et d’une toundra minérale caractérisant l’EFT du nord-ouest du Canada afin de quantifier les différences journalière et saisonnières des échanges d'énergie. Quatre paramètres de surface (albédo, conductance aérodynamique, conductance de surface et facteur de découplage) ont été examinés dans le but d’expliquer les différences dans la balance énergétique de surface. Des observations par radiosonde basées sur des campagnes de terrain et une expérience de modélisation de la couche limite atmosphérique ont été réalisées afin de discuter des conséquences potentielles des changements de végétation sur la dynamique de la couche limite atmosphérique (hauteur, température, humidité) et ses implications pour le climat régional. La forêt subarctique a démontré une meilleure capacité à transférer la chaleur vers l’atmosphère et une plus grande résistance à l'évapotranspiration, se traduisant par des conditions atmosphériques plus chaudes et sèches, spécialement au printemps. En été et automne, une conductance de surface plus élevée sur le site de la toundra s’est traduite par à une plus grande proportion de l'énergie utilisée pour humidifier l'atmosphère, résultant en une couche atmosphérique moins épaisse et un refroidissement régional du climat. La caractérisation des interactions entre la surface et l’atmosphère à travers l’EFT contribuera à améliorer les prédictions des effets des changements de végétation en cours sur le climat régional dans la région boréale arctique. / Considering its vast extent, the Arctic-boreal region (ABR) plays an important role in the global climate system through its exchange of energy and matter with the atmosphere. Air temperature across the ABR has been increasing at a higher rate compared to the global average and has led to changes in vegetation composition and structure across the ABR. The ABR includes the forest-tundra ecotone (FTE), spanning more than 10,000 km across the northern hemisphere. As the world’s longest transition zone, the FTE separates the boreal and Arctic biomes over a width of only a few tens to hundreds of kilometers. Vegetation composition and structure varies considerably across the FTE as trees become, from south to north, shorter and more stunted, sparser, and eventually, absent. The associated latitudinal gradient in surface properties results in corresponding latitudinal variations in the energy balance. Thus, changes in the latitudinal variation in surface properties and energy exchanges within the atmospheric boundary layer (ABL) may affect future regional climate across the FTE. The goal of this study was to develop a baseline understanding of the latitudinal variation in surface-atmosphere interactions and atmospheric boundary layer dynamics across the FTE in northwestern Canada. We used paired eddy covariance measurements of surface energy fluxes and supporting environmental measurements at a subarctic woodland (‘woodland’) and a mineral upland tundra site (‘tundra’) to quantify differences in daily and seasonal differences in woodland and tundra properties and energy exchanges. Four bulk surface parameters (albedo, aerodynamic conductance, surface conductance, and decoupling factor) were examined to explain drivers of those differences. Campaign-based radiosonde observations and numerical experiments using an ABL model were used to examine the impacts of a sparse tree cover on ABL dynamics (height, temperature, humidity) and their implications for surface climate compared to treeless tundra. The sparse tree cover at the woodland site showed an enhanced ability to transfer heat into the atmosphere and a higher resistance to evapotranspiration compared to tundra, leading to warmer and drier conditions especially in late winter and spring. In summer and fall, higher bulk surface conductance at the tundra site led to more energy being used to moisten the atmosphere, resulting in a shallower ABL and regional cooling of the atmosphere. Refined characterization of land surface-atmosphere interactions across the FTE will help to project the effect of ongoing vegetation changes on regional climate in the circumpolar Arctic-boreal region.

Page generated in 0.0345 seconds