31 |
The Whistle caller concept - Signature whistles as call-over signals for Bottlenose dolphins (Tursiops truncatus) under human careRylander, Tilde January 2021 (has links)
Dolphins use stereotyped, individually distinctive, frequency modulated whistles, referred to as signature whistles, in order to broadcast their identity. In this study, we trained six dolphins at Kolmården Zoo, Sweden, to be called over, either upon hearing their own signature whistle (SW) or upon hearing a biologically irrelevant ”trivial” sound (TS), with the aim to prove the Whistle caller concept. The Whistle caller concept is based on the fact that dolphins occasionally use other dolphins’ signature whistles in order to address specific group members and convene. Our hypotheses were that (1) dolphins call-over trained using their SW would learn the behaviour faster than dolphins trained using TSs, and (2) dolphins trained with their SW would be able to discriminate between different SWs better than dolphins trained with a TS would be at discriminating between different TSs. Three out of three dolphins were successfully call-over trained using their SW, and two out of three dolphins using their assigned TS. When discriminating between different sounds, two of the dolphins trained using their SW performed significantly better than one of the dolphins trained using a TS. However, there were large intra-group differences in the results, indicating that we cannot eliminate the possibility that these results stem from individual differences in these dolphins’ ability to learn new behaviours overall, rather than an understanding of the sounds they heard. We suggest that future studies focus on (1) male-female differences in discrimination success when applying the Whistle caller concept, (2) how the characteristics of the trivial sounds affect discrimination success, and (3) the option of calling more than one animal at a time by sending out several SWs in succession.
|
32 |
Diving deeper into the dolphin's Umwelt : acoustic, gustatory, olfactory and magnetic perceptionKremers, Dorothee 11 December 2013 (has links) (PDF)
The Umwelt concept of Jakob von Uexküll considers animals as subjects that inhabit their own subjective universe which is determined by the animal's sensory perception and cognitive abilities. Dolphins present an interesting species to investigate its Umwelt because cetaceans underwent a drastic change in lifestyle in the course of evolution because these mammals returned from a terrestrial life back into the water. Although bottlenose dolphins are intensively studied there are still many knowledge gaps. Here we studied some aspects of the dolphins' Umwelt by asking: (1) how their nocturnal acoustic Umwelt is arranged; (2) what the production of vocal copies can tell us about the dolphins' perception of their environment; (3) whether they are able to perceive tastes (4) or odours; (5) whether they are sensitive to magnetic stimuli. We found that the dolphins' nocturnal Umwelt was characterized by a temporally patterned vocal activity that also included vocal copies of sounds that the dolphins had heard during the day. This is a striking separation between auditory memory formation and vocal copy production and the copies might be a vocally expressed nocturnal rehearsal of day events. Thus, vocalizations can serve as possible indicators of events or objects that are meaningful to the dolphins. Regarding dolphins' perceptive abilities, we found that they were sensitive to both gustatory and olfactory food-related stimuli. They might use this ability to locate and/or evaluate prey. Further, dolphins responded to a magnetic stimulus, suggesting that they are magnetosensitive, what could be useful for navigation. So far, chemo- and magnetoreception have not been considered seriously as potentially functional in dolphins. The results obtained during this thesis fill some of the gaps that still exist in the knowledge of the dolphin's Umwelt and therefore contribute to a better understanding of this species. Moreover, they illustrate that even already intensively studied species may still hold important facets of their biology to reveal and that research should broaden the view and remain unbiased when studying a topic.
|
33 |
The Social Structure and Mating Strategies of Bottlenose Dolphins (Tursiops truncatus) in the St. Johns RiverErmak, Jessica Lea 01 January 2014 (has links)
Across populations, bottlenose dolphins (Tursiops sp.) exhibit a fission-fusion pattern of associations, in which group size and composition change fluidly throughout the day. Beneath this seemingly ephemeral social structure, considerable variation exists across study sites. While females typically have moderate bonds with one another within a large social network, male-male bonds are variable, though males typically take one of two strategies; some males encounter females individually for opportunities to breed while others cooperate within a first-order alliance to collectively herd females. In addition, multi-tiered alliances in which two first-order alliances cooperate to defend or assist in the theft of a female have been documented within Shark Bay, Australia. However, these patterns do not apply to all study sites, as intersexual bonds are strong within several bottlenose dolphin populations. Given the variation in the presence and complexity of male alliances, greater documentation of social structure and male mating strategies across study sites is needed to draw conclusions as to the ultimate factors behind alliance formation. As such, chapter one documents the inclusion of a new study site in the St. Johns River (SJR) in Northeast Florida where males form first and second-order alliances. In addition, variables from the SJR are included within a meta-analysis in chapter two, the first systematic examination of what variables correlate with alliance presence and complexity, with the conclusion that male-male competition best describes the patterns seen in male alliance formation. Chapter three builds upon this conclusion by examining seasonal trends in tooth rake marks, a proxy for aggression, across the sexes and males of two different mating strategies, ultimately highlighting the potential for non-reproductive aggression. Together, this work provides greater insight as to the social structure and mating patterns of bottlenose dolphins, as well as to the ecological pressures that result in complex sociality.
|
34 |
Natural and human impacts on habitat use of coastal delphinids in the Mossel Bay area, Western Cape, South AfricaJames, B.S. (Bridget) 01 1900 (has links)
The south coast of South Africa represents the extreme western end of the range of the Indo-Pacific humpback (Sousa chinensis, plumbea type) and Indo-Pacific bottlenose dolphins (Tursiops aduncus), which are both confirmed to range as far west as False Bay (Jefferson & Karczmarski, 2001; Hammond et al., 2008). Individual ranging behaviour for both species however is not well resolved. Recent genetic analyses suggest that animals currently considered as plumbea type Sousa chinensis (Reeves et al., 2008) may be a separate species, Sousa plumbea (Mendez et al., 2013). In South African waters less than 1000 adult humpback dolphins (Sousa chinensis, plumbea type hereafter “humpback dolphin”) may comprise the entire population (Karczmarski, 1996), while all estimates suggest the bottlenose dolphin (Tursiops aduncus, hereafter “bottlenose dolphins”) population is relatively large, numbering thousands of animals (Cockcroft et al., 1992; Reisinger & Karczmarski, 2010). Both dolphin species are exposed to variable levels of anthropogenic impacts throughout their range including vessel traffic, chemical pollution and habitat degradation associated with coastal development.
This thesis describes the results of a study investigating: 1) the environmental and anthropogenic factors which influence the habitat use of humpback and bottlenose dolphins in two adjacent bays on the southern Cape coast, South Africa – Mossel Bay and Vlees Bay; 2) the abundance of humpback dolphins using Mossel Bay and 3) the interaction of these two dolphin species with white sharks, and the influence this has on dolphin group sizes and habitat use in Mossel Bay. Both land-based and boat-based survey platforms were used in this study with land-based data collected during dedicated watch periods at sites in Mossel Bay (n = 6) and Vlees Bay (n = 4) between February 2011 and March 2013, with a focus on humpback and bottlenose dolphins. A surveyor’s theodolite was used at these sites to collect positional data on animals, while behavioural data were collected through direct observation. Boat-based photographic identification surveys were used to collect data on the presence of individual humpback dolphins in Mossel Bay between April 2011 and November 2013. White shark data from Mossel Bay between February 2011 and March 2013 were provided from boat-based chumming surveys for the collection of photo-ID data from the Master’s thesis of Rabi’a Ryklief, based at Oceans Research. Data were analysed using ANOVA’s, Tukey honest significance tests and generalised additive modelling (Wood, 2006) in programme R, while capture histories of humpback dolphins were analysed with RMark (Laake, 2013) using POPAN open population models (Schwarz & Arnason, 1996) and Huggins heterogeneity closed capture models (Huggins, 1989; Chao et al., 1992).
Humpback dolphins socialised over sandy beach habitats in both bays, while feeding/foraging occurred over reef systems in Mossel Bay and off fine grained sandy beach habitats in Vlees Bay. Humpback dolphin resting behaviour was observed at a very low frequency and occurred in all of the primary habitat types in Mossel Bay, while in Vlees Bay resting was only observed over reefs. Bottlenose dolphins in both bays preferentially used wave cut rocky platform habitats for feeding/foraging and resting while socialising occurred in the vicinity of estuaries in Mossel Bay and fine grained sandy beach habitats in Vlees Bay.
Higher sighting rates were recorded in the control site, Vlees Bay, than in Mossel Bay for both dolphin species. The largest reverse osmosis desalination plant commenced operations in the sheltered corner of Mossel Bay in October 2011 and discharged approximately five million litres (Ml) of effluent per day (between October 2011 and February 2012) and 18 Ml per day in March and April 2012. In Mossel Bay higher sighting rates of humpback dolphins occurred in the period before desalination began while bottlenose dolphin sighting rates were highest after active desalination decreased to once per month (May, 2012). During the period of peak brine discharge in Mossel Bay, sighting rates were highest for both species in Vlees Bay. Even after desalination operations decreased the sighting rate of humpback dolphins remained low. The operation of the desalination plant at full capacity in Mossel Bay may have led to reduced use of this area by both humpback and bottlenose dolphins.
Key habitats in Mossel Bay for both dolphin species are shared with great white sharks (Carcharodon carcharias hereafter “white sharks”) and focus around the three estuaries and their associated near-shore reef systems. The presence of predatory white sharks may limit the time dolphins spend in a specific habitat and influence the number of animals within groups, with larger humpback dolphin groups at sites with high shark utilisation. Both dolphin species had lower individual sighting rates during periods when white shark abundance peaked. Large group sizes of humpback dolphins at Seal Island, and of bottlenose dolphins at Hartenbos and Tergniet, combined with increased rates of travelling and decreased resting and socializing suggest that these areas may pose the largest threat to dolphins due to the variety of shark size classes’ present, especially larger sharks.
Closed capture models generated within year population estimates ranging from 48 to 97 individual humpback dolphins (2011: 97, 95% CI: 46 – 205; 2012: 48, 28 – 81; 2013: 68, 35 – 131) while open population modelling produced a ‘super-population’ estimate of 116 animals (95% CI: 54 – 247) using Mossel Bay. During the study 67 humpback dolphins were individually identified with 94.3 % of the individuals in good quality photographs distinctively marked. Fewer humpback dolphins may be present on the south-east and southern Cape coast, including between Algoa Bay and Mossel Bay, than initially thought (Karczmarski, 1996), as definite links exist between Algoa Bay and Plettenberg Bay (Smith-Goodwin, 1997), and Plettenberg Bay and Mossel Bay (this study). The Gouritz River mouth (21º 53' E; Ross, 1984) and De Hoop (20º 30' E; Findlay et al., 1992) were previous suggested as the western limit of this species, but within the last 20 years knowledge on the extent of their range has been greatly improved, and range extension of this species may be occurring to the west with animals present as far west as False Bay (18º 48' E; Jefferson & Karczmarski, 2001). Due to the vulnerability of this species and their wide ranging behaviour, conservation plans need to be implemented on a wide scale to ensure protection of these animals from human impacts throughout their range. A concerted effort is required to further establish the population links between the various locations on the southern Cape coast that these animals frequent. / Dissertation (MSc)--University of Pretoria, 2014. / Zoology and Entomology / MSc / Unrestricted
|
35 |
Reproductive Biology of the Female Bottlenose Dolphin (Tursiops Truncatus)Muraco, Holley Stone 11 December 2015 (has links)
The goal of this long-term study was to better understand the reproductive biology of the female bottlenose dolphin (Tursiops truncatus) and provide a hypothesis for how dolphins may communicate reproductive readiness to one another. Utilizing conditioned dolphins in aquaria, this dissertation examined several previously unknown aspects of dolphin reproduction, including ovarian follicular dynamics during the luteinizing hormone surge, urinary prolactin levels, estrus behavior, vaginal fluid arboriform arrangement, in-situ vaginal and cervical anatomy during estrus, reversed-phase high-performance liquid chromatography (RP-HPLC) of urine samples to identify proteins and peptides that may be used in chemical communication, and a review and anatomical analysis of dolphin vibrassal crypts. The diffusely seasonal dolphin estrous cycle is not controlled by photoperiod and has a 10-day follicular and 20-day luteal phase. A brief ovulatory LH surge is followed by ovulation within 48 hours. An ethogram of 20 reproductive behaviors was developed, and all occurrences of reproductive behavior were analyzed during conceptive estrous cycles. A novel form of standing heat estrus, termed immobility, was observed, and estrus dolphins displayed genital nuzzling, active and passive mounting with other females, and an increase of standing heat intensity as LH levels rose. Prolactin plays a role in pregnancy maintenance, mammary development, allo-mothering behavior, lactation, and lactational anestrus. Dolphins are similar to sows where weaning causes a return to estrus, and in the boar effect, where days to ovulation are shortened in the presence of a mature male. Dolphin vaginal fluid showed crystallization arrangements with large open mesh patterns, conducive to sperm transport, during the estrogenic follicular phase, and closed mesh during the luteal phase. RP-HPLC analysis revealed that urine contained large amounts of peptides and proteins with peaks that change throughout the estrous cycle and with changes in social grouping. Remnant vibrissae from dolphin follicular crypts were sectioned, and it was hypothesized that trigeminal nerve endings could act similarly to those found in the nasal mucosa of terrestrial species and respond to chemical stimuli. This study provides new data to better understand the reproductive biology of a holaquatic mammal.
|
Page generated in 0.0299 seconds