• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 71
  • 56
  • 17
  • 15
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 399
  • 399
  • 113
  • 57
  • 53
  • 38
  • 32
  • 29
  • 28
  • 27
  • 24
  • 23
  • 23
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Starch-binding domain-containing protein 1: a novel participant in glycogen metabolism

Jiang, Sixin 23 August 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Glycogen, a branched polymer of glucose, acts as an intracellular carbon and energy reserve in many tissues and cell types. The breakdown of glycogen by hormonally regulated degradation involving the coordinated action of glycogen phosphorylase and debranching enzyme has been well studied. However, the importance of lysosomal disposal of glycogen has been underscored by a glycogen storage disorder, Pompe disease. This disease destroys tissues by over-accumulating glycogen in lysosomes due to a genetic defect in the lysosomal acid α-glucosidase. Details of the intracellular trafficking of glycogen are not well understood. Starch-binding domain-containing protein 1 (Stbd1) is a protein of previously unknown function with predicted hydrophobic N-terminus and C-terminal CBM20 carbohydrate binding domain. The protein is highly expressed in the liver and muscle, the major repositories of glycogen. Stbd1 binds to glycogen in vitro and in vivo with a preference for less branched and more phosphorylated polysaccharides. In animal models, the protein level of Stbd1 correlates with the genetic depletion of glycogen. Endogenous Stbd1 is found in perinuclear compartments in cultured mouse and rat cells. When over-expressed in cells, Stbd1 accumulates and coincides with glycogen and GABARAPL1, the autophagy protein. They form enlarged perinuclear structures which are abolished by removing the hydrophobic N-terminus of Stbd1. Stbd1, with point mutations in the CBM20 domain, retains the perinuclear localization but without concentration of glycogen in this compartment. In cells that are stably over-expressing glycogen synthase, glycogen exists as large perinuclear deposits, where Stbd1 can also be present. Removing glucose from the culture leads to a breakdown of the massive glycogen accumulation into numerous smaller and scattered deposits which are still positive for Stbd1. Furthermore, the autophagy protein GABARAPL1 co-immunoprecipates and co-localizes with Stbd1 when co-expressed in cells. Point mutation or deletion of the autophagy protein interacting region on Stbd1 eliminates the interaction and co-localization with GABARAPL1 but not the characteristic perinuclear distribution of Stbd1. We propose that Stbd1 is involved in glycogen metabolism. In particular, it participates in the vesicular transfer of glycogen to the lysosome with the recruitment of autophagy related proteins GABARAPL1 and/or GABARAP, as these vesicles mature prior to lysosomal fusion.
172

Risk and Control of Type II Diabetes: Perceptions of Unaffected Relatives

Smith, Brandon J. 17 October 2013 (has links)
No description available.
173

Hälsofrämjande omvårdnad vid diabetes typ II och depression : En litteraturstudie om sjuksköterskors och patienters erfarenheter samt hälsofrämjande interventioner. / Health promotion nursing in diabetes type II anddepression : A literature study on nurses’ and patients’ experiences as well ashealth-promoting interventions

Ekberg, Anna, Darvish, Majid January 2022 (has links)
Background: Type II diabetics with co-morbidity in depression run a greater risk of suffering from sequelae. Lack of knowledge about the symptoms of depression, lack of routine for depression screening and the stigmatization of depression can affect the possibility of getting help. Depression causes suffering and impaired self-care ability.  Purpose: To describe experiences and interventions related to health promotion nursing in type II diabetes and contemporary depression. The following issues were dealt with:1. What experiences do these patients, and their nurses describe?2. What health promotion interventions have been described and tested for these patients?  Method: General literature study consisting of 7 quantitative, 2 qualitative and 1 mixed-method study.  Results: Based on the results of the Patient and nurses' experiences questionnaire, categories were identified; Depression can be difficult to identify, Approach to depression, Caregiver's need for Insight into the patient's perspective and conditions. Based on the question Health promoting interventions, categories were identified; Multifaceted efforts, Promote self-care skills and Broad competence in care.  Conclusion: Health-promoting interventions for patients with co-morbidity in diabetes type II and depression should be based on collaboration between nurse and patient where the interventions are based on the patient's needs. Nurses need psychiatric competence and insight into health-promoting methods, for example caring communication in the care of the patient category.
174

Structure-function Analysis Of The Drosophila Stubble Type Ii Transmembrane Serine Protease

Morgan, Rachel 01 January 2008 (has links)
Hormonally-triggered regulatory hierarchies play a major role in organismal development. Disruption of a single member of such a hierarchy can lead to irregular development and disease. Therefore, knowledge of the members involved and the mechanisms controlling signaling through such pathways is of great importance in understanding how resulting developmental defects occur. Type II transmembrane serine proteases (TTSPs) make up a family of cell surface-associated proteases that play important roles in the development and homeostasis of a number of mammalian tissues. Aberrant expression of TTSPs is linked to several human disorders, including deafness, heart and respiratory disease and cancer. However, the mechanism by which these proteases function remains unknown. The ecdysone-responsive Stubble TTSP of Drosophila serves as a good model in which to study the functional mechanism of the TTSP family. The Stubble protease interacts with the intracellular Rho1 (RhoA) pathway to control epithelial development in imaginal discs. The Rho1 signaling pathway regulates cellular behavior via control of gene expression and actin cytoskeletal dynamics. However, the mechanism by which the Stubble protease interacts with the Rho1 pathway to control epithelial development, in particular leg imaginal disc morphogenesis, has yet to be elucidated. The Stubble protein consists of several conserved domains. One approach to a better understanding of the mechanism of action of Stubble in regulating Rho1 signaling is to define which of the conserved domains within the protease are required for proper function. Sequence analysis of twelve recessive Stubble mutant alleles has revealed that the proteolytic domain is essential for proper function. Alleles containing mutations which disrupt regions of the protease domain necessary for protease activation or substrate binding, as well as those with deletions or truncations that remove some portion of the proteolytic domain, result in defective epithelial development in vivo. In contrast, mutations in other regions of the Stubble protein, including the disulfide-knotted and cytoplasmic domains, were not observed. Another important step for defining the connection between Stubble and Rho1 signaling is to identify a Stubble target that acts as an upstream regulator of the Rho1 pathway. We performed a genetic screen in which 97 of the 147 Drosophila non-olfactory and non-gustatory G-protein-coupled receptors (GPCRs), a family of proteins that has been shown to be protease-activated and to activate Rho1 signaling, were tested for interactions with a mutant allele of Stubble. We found 4 genomic regions uncovering a total of 7 GPCRs that interact genetically when in heterozygous combination with a Stubble mutant. Further analysis of these genes is necessary to determine if any of these GPCRs is targeted by Stubble during activation of the Rho1 pathway.
175

Dynamics of Driven Vortices in Disordered Type-II Superconductors

Chaturvedi, Harshwardhan Nandlal 22 January 2019 (has links)
We numerically investigate the dynamical properties of driven magnetic flux vortices in disordered type-II superconductors for a variety of temperatures, types of disorder and sample thicknesses. We do so with the aid of Langevin molecular dynamics simulations of a coarsegrained elastic line model of flux vortices in the extreme London limit. Some original findings of this doctoral work include the discovery that flux vortices driven through random point disorder show simple aging following drive quenches from the moving lattice state to both the pinned glassy state (non-universal aging) and near the critical depinning region (universal aging); estimations of experimentally consistent critical scaling exponents for the continuous depinning phase transition of vortices in three dimensions; and an estimation of the boundary curve separating regions of linear and non-linear electrical transport for flux lines driven through planar defects via novel direct measurements of vortex excitations. / Ph. D. / The works contained in this dissertation were undertaken with the goal of better understanding the dynamics of driven magnetic flux lines in type-II superconductors under different conditions of temperature, material defects and sample thickness. The investigations were conducted with the aid of computer simulations of the flux lines which preserve physical aspects of the system relevant to long-time dynamics while discarding irrelevant microscopic details. As a result of this work, we found (among other things) that when driven by electric currents, flux lines display very different dynamics depending on the strength of the current. When the current is weak, the material defects strongly pin the flux lines leaving them in a disordered glassy state. Sufficiently high current overpowers the defect pinning and results in the flux lines forming into a highly ordered crystal-like structure. In the intermediate critical current regime, the competing forces become comparable resulting in very large fluctuations of the flux lines and a critical slowing down of the flux line dynamics.
176

Osteoarthritis and Cartilage Insult: Elucidation of Molecular Interplay and Attempted Interventions

Rose, Brandon James 30 March 2022 (has links)
Osteoarthritis (OA) is a common and incapacitating joint disease beginning with breakdown of articular cartilage and extending into subchondral bone. At present, the processes through which the disease occurs are poorly understood, and interventions are limited to pain relief and eventual joint replacement. OA is commonly associated with obesity and corresponding pathologies, and as OA is demonstrably not a product of passive erosion of cartilage over time or under increased loads there must needs be some other mechanistic link between the two conditions. We hypothesize that the production of ceramides, a hallmark of the insulin resistance syndrome underlying many obesity-related conditions, acts to induce OA through its pro-inflammatory and pro-apoptotic activities, as well as directly inhibiting intracellular mediators of cartilage production and homeostasis. We demonstrate in Wistar rats that a high-fat, high-sugar (HFHS) diet successfully induces OA and that downregulation of ceramide synthesis through intraperitoneal myriocin administration does not prevent this degradation, and that myriocin in conjunction with a standard chow diet actually induces OA. Alteration in OA biomarkers in this study are discussed. We then tested the efficacy of a topical regimen of wogonin, an anti-inflammatory, anti-oxidative, and potentially analgesic compound in a surgical destabilization model (DMM) of OA in mice and demonstrate its disease modifying anti-OA properties. We further test the efficacy of this compound on the HFHS model previously established and find it successfully ameliorated the morphology and biomarker changes associated with OA; based on this data we hypothesize that inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is the most relevant physiological target of wogonin in a HFHS-induced OA model. Lastly and separately, we seek to clarify conflicting data regarding secondhand smoke (SHS), which observational studies suggest having either deleterious or beneficial effects to preexisting OA. In the first controlled study on the subject we model we demonstrate in a murine DMM model that SHS accelerates cartilage degradation and patterns of biomarker expression characteristic of OA, eliminating the question of any potential benefits of SHS to articular cartilage.
177

Synthesis of Nanoscale Semiconductor Heterostructures for Photovoltaic Applications

Nemitz, Ian R. 08 July 2010 (has links)
No description available.
178

Analysis of Parental Perception of Swallowing and Voice in Infants and Children with Pompe Disease

Cecchi, Alana 04 August 2011 (has links)
No description available.
179

RENAL FUNCTION IN DIABETES MELLITUS AND THE ROLE OF NITRIC OXIDE IN ALTERED FLUID BALANCE STATES

Noonan, William Thomas January 2000 (has links)
No description available.
180

SORTING AND SECRETION OF SURFACTANT PROTEIN C

Johnson Conkright, Juliana j. 11 October 2001 (has links)
No description available.

Page generated in 0.0552 seconds