• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 32
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 188
  • 78
  • 70
  • 58
  • 41
  • 38
  • 35
  • 33
  • 28
  • 27
  • 25
  • 23
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Detection of Tornado Damage via Convolutional Neural Networks and Unmanned Aerial System Photogrammetry

Carani, Samuel James 21 October 2021 (has links)
Disaster damage assessments are a critical component to response and recovery operations. In recent years, the field of remote sensing has seen innovations in automated damage assessments and UAS collection capabilities. However, little work has been done to explore the intersection of automated methods and UAS photogrammetry to detect tornado damage. UAS imagery, combined with Structure from Motion (SfM) output, can directly be used to train models to detect tornado damage. In this research, we develop a CNN that can classify tornado damage in forests using SfM-derived orthophotos and digital surface models. The findings indicate that a CNN approach provides a higher accuracy than random forest classification, and that DSM-based derivatives add predictive value over the use of the orthophoto mosaic alone. This method has the potential to fill a gap in tornado damage assessment, as tornadoes that occur in wooded areas are typically difficult to survey on the ground and in the field; an improved record of tornado damage in these areas will improve our understanding of tornado climatology. / Master of Science / Disaster damage assessments are a critical component to response and recovery operations. In recent years, the field of remote sensing has seen innovations in automated damage assessments and Unmanned Aerial System (UAS) collection capabilities. However, little work has been done to explore the intersection of automated methods and UAS imagery to detect tornado damage. UAS imagery, combined with 3D models, can directly be used to train machine learning models to automatically detect tornado damage. In this research, we develop a machine learning model that can classify tornado damage in forests using UAS imagery and 3D derivatives. The findings indicate that the machine learning model approach provides a higher accuracy than traditional techniques. In addition, the 3D derivatives add value over the use of only the UAS imagery. This method has the potential to fill a gap in tornado damage assessment, as tornadoes that occur in wooded areas are typically difficult to survey on the ground and in the field; an improved record of tornado damage in these areas will improve our understanding of tornado climatology.
12

Konstruering och implementation av kollisionsvarningsljus för UAS / Construction and Implementation of Anti-Collision Light for UAS

Strömberg, Sebastian, Eriksson, Oscar January 2016 (has links)
Syftet med detta examensarbete har varit att konstruera ett kollisionsvarningsljus till en drönare åt Etteplan Industry AB. Företaget använder denna för att utföra tjänster åt olika företag så som flygfotografering och 3D-modelleringar.Svårigheterna i detta arbete har legat i bristen på plats och vikt samt att hålla effektförbrukningen så låg som möjligt för att inte påverka flygtiden för mycket. Samtidigt finns en hel del krav från luftfartsorgan på hur ett kollisionsvarningsljus ska konstrueras. Mycket fokus har legat på att testa och välja ut de LEDs med så mycket lumens/watt som möjligt utan att överskrida de riktlinjer som fanns angående effektförbrukning och vikt. För att åstadkomma detta har strömsnåla komponenter använts samtidigt som ett PCB har designats så litet som möjligt.Produkten har uppfyllt de krav som ställts, även om de resulterande strömmarna inte riktigt blev enligt förväntan på grund av olika faktorer. Produkten har ännu inte testats i luften på grund av att företagets UAS varit ute på uppdrag, men i slutändan blev ändå alla parter nöjda med resultatet.
13

Utilizing unmanned aerial systems to sample insects in soybean

Merkl, Marvin 09 August 2022 (has links) (PDF)
To overcome some limitations of manual insect sampling in soybeans, an unmanned aerial vehicle (UAV) sampling platform was developed that could collect insects in a sweep net attached to the bottom of a UAV. Before this UAV sampling platform can be used to make management decisions, correlations with manual sweep net and/or drop cloth sampling methods are needed. This will allow action thresholds for the various pests to be calculated for the UAV sampling platform. To make the correlations, 87 soybean fields were sampled during 2020 and 2021 with each of 4 sampling methods, a UAV travelling 50-m, the same UAV travelling 25-m, 25 manual sweeps with sweep net, and a 1.5-row-m sample on a drop cloth. Data were compiled for 12 insect pests of soybeans in 5 families. Significant positive correlations between all sampling methods showed that all methods were useful for sampling all the insects of interest.
14

UAS Risk Analysis using Bayesian Belief Networks: An Application to the VirginiaTech ESPAARO

Kevorkian, Christopher George 27 September 2016 (has links)
Small Unmanned Aerial Vehicles (SUAVs) are rapidly being adopted in the National Airspace (NAS) but experience a much higher failure rate than traditional aircraft. These SUAVs are quickly becoming complex enough to investigate alternative methods of failure analysis. This thesis proposes a method of expanding on the Fault Tree Analysis (FTA) method to a Bayesian Belief Network (BBN) model. FTA is demonstrated to be a special case of BBN and BBN can allow for more complex interactions between nodes than is allowed by FTA. A model can be investigated to determine the components to which failure is most sensitive and allow for redundancies or mitigations against those failures. The introduced method is then applied to the Virginia Tech ESPAARO SUAV. / Master of Science
15

Development of a Peripheral-Central Vision System to Detect and Characterize Airborne Threats

Kang, Chang Koo 29 October 2020 (has links)
With the rapid proliferation of small unmanned aircraft systems (UAS), the risk of mid-air collisions is growing, as is the risk associated with the malicious use of these systems. The airborne detect-and-avoid (ABDAA) problem and the counter-UAS problem have similar sensing requirements for detecting and tracking airborne threats. In this dissertation, two image-based sensing methods are merged to mimic human vision in support of counter-UAS applications. In the proposed sensing system architecture, a ``peripheral vision'' camera (with a fisheye lens) provides a large field-of-view while a ``central vision'' camera (with a perspective lens) provides high resolution imagery of a specific object. This pair form a heterogeneous stereo vision system that can support range resolution. A novel peripheral-central vision (PCV) system to detect, localize, and classify an airborne threat is first introduced. To improve the developed PCV system's capability, three novel algorithms for the PCV system are devised: a model-based path prediction algorithm for fixed-wing unmanned aircraft, a multiple threat scheduling algorithm considering not only the risk of threats but also the time required for observation, and the heterogeneous stereo-vision optimal placement (HSOP) algorithm providing optimal locations for multiple PCV systems to minimize the localization error of threat aircraft. The performance of algorithms is assessed using an experimental data set and simulations. / Doctor of Philosophy / With the rapid proliferation of small unmanned aircraft systems (UAS), the risk of mid-air collisions is growing, as is the risk associated with the malicious use of these systems. The sensing technologies for detecting and tracking airborne threats have been developed to solve these UAS-related problems. In this dissertation, two image-based sensing methods are merged to mimic human vision in support of counter-UAS applications. In the proposed sensing system architecture, a ``peripheral vision'' camera (with a fisheye lens) provides a large field-of-view while a ``central vision'' camera (with a perspective lens) provides high resolution imagery of a specific object. This pair enables estimation of an object location using the different viewpoints of the different cameras (denoted as ``heterogeneous stereo vision.'') A novel peripheral-central vision (PCV) system to detect an airborne threat, estimate the location of the threat, and determine the threat class (e.g. aircraft, bird) is first introduced. To improve the developed PCV system's capability, three novel algorithms for the PCV system are devised: an algorithm to predict the future path of an fixed-wing unmanned aircraft, an algorithm to decide an efficient observation schedule for multiple threats, and an algorithm that provides optimal locations for multiple PCV systems to estimate the threat position better. The performance of algorithms is assessed using an experimental data set and simulations.
16

Unmanned Aerial System for Monitoring Crop Status

Rogers, Donald Ray III 11 January 2014 (has links)
As the cost of unmanned aerial systems (UAS) and their sensing payloads decrease the practical applications for such systems have begun expanding rapidly. Couple the decreased cost of UAS with the need for increased crop yields under minimal applications of agrochemicals, and the immense potential for UAS in commercial agriculture becomes immediately apparent. What the agriculture community needs is a cost effective method for the field-wide monitoring of crops in order to determine the precise application of fertilizers and pesticides to reduce their use and prevent environmental pollution. To that end, this thesis presents an unmanned aerial system aimed at monitoring a crop's status. The system presented uses a Yamaha RMAX unmanned helicopter, operated by Virginia Tech']s Unmanned Systems Lab (USL), as the base platform. Integrated with helicopter is a dual-band multispectral camera that simultaneously captures images in the visible and near-infrared (NIR) spectrums. The UAS is flown over a quarter acre corn crop undergoing a fertilizer rate study of two hybrids. Images gathered by the camera are post-processed to form a Normalized Difference Vegetative Index (NDVI) image. The NDVI images are used to detect the most nutrient deficient corn of the study with a 5% margin of error. Average NDVI calculated from the images correlates well to measured grain yield and accurately identifies when one hybrid reaches its yield plateau. A secondary test flight over a late-season tobacco field illustrates the system's capabilities to identify blocks of highly stressed crops. Finally, a method for segmenting bleached tobacco leaves from green leaves is presented, and the segmentation results are able to provide a reasonable estimation of the bleached tobacco content per image. / Master of Science
17

Karta över Furuviksparken : Kontroll enligt HMK:s gamla och nya dokument samt dokument från Norge och Finland

Röragen, Sofi, Rosén Säfström, Olivia January 2018 (has links)
The purpose of the study was to compile a map of Furuvik theme park using UAS-photogrammetry and evaluate the products quality by performing a map control. The map control is carried out with guidelines from new and old HMK-documents and how such an evaluation is carried out in our neighbouring countries. At the same time, a time study was carried out on the project's workflow as a request from the University of Gävle (HiG) for a future Master's degree program in Land Surveying. The flight was carried out with a multicopter from Altigator. Prior to the flights, flight signals were placed and as well as, known points (stompunkter), were measured with SWEPOS network-RTK (real-time kinematic). The flight resulted in 1036 images, which in PhotoScan were joined together by block adjustment and generated an orthophotomosaic and a digital elevation model were generated. In ArcMap, from the orthomosaic, a map was produced, which was then controlled using measured control points. The results in the plan points show that the difference between objects in the produced map and their known coordinates varies radially between 0.0014 m and 0.029 m. The mean deviation is 0.009 m with the standard uncertainty (Sp) 0.014 m and the root mean square (RMS) 0,014 m. All requirements in HMK-Geodatakvalitet (Geodata Quality), HMK-Flygfotografering (Aerial Photography), HMK-Kartografi (Cartography), and similar documents from the Norwegian and Finnish national land survey were fulfilled. The requirements of the newer HMK documents on geodata quality and aerial photography are reasonable while HMK cartography needs updating as the requirements are too low, 0.07 m To control the height model, 18 control profiles were measured in according to the Swedish technical specification SIS-TS 21144: 2016. RMS in height for the entire area was 0.032 m. The duration of the study's implementation was documented to produce a time study that resulted in 374 hours of work during nine weeks. / Syftet med studien var att med hjälp av UAS-fotogrammetri framställa en karta över Furuviks nöjespark och utvärdera produktens kvalitet i form av en kartkontroll. Kartkontrollen genomfördes med riktlinjer från nya och gamla HMK-dokument samt hur en sådan utvärdering utförs i våra grannländer. Samtidigt utfördes en tidsstudie över projektets arbetsgång som ett önskemål från Högskolan i Gävle (HiG) för ett framtida civilingenjörsprogram inom lantmäteriteknik. Flygningen genomfördes med en multikopter från Altigator. Inför flygningarna placerades flygsignaler ut som liksom stompunkter mättes in med SWEPOS nätverks-RTK (real time kinematic). Flygningen resulterade i 1036 bilder som fogades samman i PhotoScan genom blockutjämning och genererade en ortotfotomosaik samt en markmodell. I ArcMap framställdes, ur ortofotomosaiken, en karta som sedan kontrollerades med hjälp av inmätta markpunkter i form av stickprov. Resultatet i plan av stickproven visar att skillnaden mellan objekt i den producerade kartan och motsvarande objekt inmätta i området varierar radiellt mellan 0,0014 m och 0,029 m. Medelavvikelsen radiellt är 0,014 m med standardosäkerheten (Sp) 0,014 m. Samtliga krav i HMK-Geodatakvalitet, HMK-Flygfotografering, HMK-Kartografi samt norska och finska styrdokument uppfylldes. Kraven i de nyare HMK-dokumenten om geodatakvalitet och flygfotografering har följt den tekniska utvecklingen medans HMK-Kartografi behöver uppdateras då kraven är för låga, 0,07 m. För att kontrollera markmodellen mättes 18 kontrollprofiler in i enlighet med den tekniska specifikationen SIS-TS 21144:2016. Standardosäkerheten i höjd för hela området resulterade i 0,032 m. Tidsåtgången för studiens genomförande dokumenterades för att framställa en tidsstudie som resulterade i 374 arbetstimmar under nio veckor.
18

Optimering av datainsamling med UAS : En studie i alternativa flyghöjder kontra mätosäkerheter utförd i Avesta

Hägglund, Sandra, Lindh, Rose-Marie January 2019 (has links)
Studiens syfte var att genom UAS-fotogrammetri se om det var möjligt att uppnå en mätosäkerhet på 2–3 cm samt se om det är möjligt att använda sprayfärgade kryss som markstöd istället för masonitplattor med målade timglas och ändå uppnå samma mätosäkerhet. Detta gjordes från två olika flyghöjder, 80 m och 110 m för att få en till dimension på studien. Markstöden mättes in med GNSS och i studien användes UAS DJI Phantom 4 v2.0 vid flygfotograferingen. I plan kontrollerades kartan genom detaljmätning med hjälp av multistation etablerad med 180-sekunders metoden. Kontroll av kartan i höjd gjordes genom inmätning av kontrollprofiler med GNSS och multistation. Totalt bearbetades data från 4 inmätningar, data från 80 m där markstöd bestått av masonitplattor respektive sprayfärgade kryss och det samma från 110 m. Databearbetningen utfördes i Agisoft PhotoScan där bilderna bearbetades till en ortofotomosaik, DEM och DSM. Ortofotomosaiken och DEM importerades sedan till ArcMap för skapande av baskarta och för kontroll av koordinaterna i plan. Markmodellen importerades till SBG Geo för vidare bearbetning och kontroll av avvikelse mellan kontrollprofilerna och DEM.  Resultatet av 42 st detaljmätningar gjordes genom beräkning av RMS-värdet mellan inmätta koordinater och motsvarande punkt i kartan. Vid flygfotografering från 80 m visade timglas ett RMS-värde på 0,038 m och kryss ett RMS-värde på 0,039 m. Motsvarande från 110 m visar att timglas gav ett RMS-värde på 0,062 m och kryss på 0,048 m. Alla inmätningar utom timglas från 110 m klarar toleransen mot HMK – Geodatakvalitet som är 5 cm och när enbart marknära objekt mättes gav det ett RMS-värde i plan på 0,026 m för timglas från 80 m och 0,023 m för kryss. 2–3 cm mätosäkerhet uppnåddes därmed. Från 110 m blev värdet 0,054 m med timglas och 0,035 m med kryss.  Kontroll av höjdosäkerhet gjordes enligt SIS-TS 21144:2016, där 12 kontrollprofiler mättes in och jämfördes mot DEM. Resultatet från 80 m med timglas som markstöd visade en total medelavvikelse på 0,006 m med 0,019 m i standardosäkerhet. Från samma flyghöjd, men med inmätningar av kryss visade ett resultat om -0,001 m med standardosäkerhet 0,030 m. Från den högre flyghöjden med timglas genererades en total medelavvikelse på 0,010 m med standardosäkerhet 0,033 m. Motsvarande genererade kryss en total medelavvikelse på 0,026 m med standardosäkerhet 0,040. Alla 4 markmodellerna klarar den efterfrågade mätosäkerheten om 2–3 cm. / The aim of this study was to collect data through UAS photogrammetry and investigate if it was possible to achieve an uncertainty of 2-3 cm. The second aim was to investigate if it was possible to use spray-colored crosses as control points (GCP) instead of hourglass-painted fibreboards to achieve the same uncertainty. This was done from two different flight heights, 80 m and 110 m to add another dimension to the investigation. The GCPs were measured with GNSS and in the study a UAS DJI Phantom 4 v2.0 was used for aerial photography. The plane coordinates was checked by measuring details using multistation established with the 180-second method. Height control was done by measuring profiles with GNSS and multistation. All together data from 4 measurements were processed; from 80 m where GCPs consisted of hourglass and crosses, respectively, and the same from 110 m. The processing was performed in Agisoft PhotoScan where the images were aligned to an orthophoto mosaic. A DEM and DSM were also created. The orthophoto mosaic and DEM were used in ArcMap for digitizing a base map and for checking the plane coordinates. The DEM was imported to SBG Geo for further processing and control of deviation between profiles and DEM.  The result of the 42 measured details was made by calculating the RMSE value between the measured plane coordinates and the corresponding points in the map. In aerial photography from 80 m, hourglass showed an RMSE value of 0.038 m and crosses an RMSE value of 0.039 m. Corresponding from 110 m, hourglass gave an RMSE value of 0.062 m and a cross of 0.048 m. All measurements except hourglass from 110 m can withstand the tolerance to HMK – Geodatakvalitet (2017) which is 5 cm. If only ground-level objects were to be measured the RMSE value of 0.026 m for hourglass from 80 m and 0.023 m for crosses reached the wanted measurement uncertainties of 2–3 cm. From 110 m the value was 0.054 m with hourglass and 0.035 m with cross.  The control of the height uncertainty was made in accordance with SIS-TS 21144:2016, where 12 profiles were measured and compared with the DEM. The result from 80 m with hourglass showed a total mean deviation (MD) of 0.006 m with 0.019 m in standard deviation (SD). From the same flight height, but with crosses, a result of -0.001 m with SD showed 0.030 m. From the higher height with hourglass, a total MD of 0.010 m with SD 0.033 m was generated. The corresponding crosses got a MD of 0,026 m and a SD of 0,040 m. All 4 DEM can handle the required measurement uncertainty of 2-3 cm.
19

Uppdatering av nationella höjdmodellen över begränsade områden med hjälp av UAS

Hedqvist, Emma, Jakobsson, Daniel January 2016 (has links)
I det här examensarbetet undersöks möjligheten att använda UAS över begränsade områden när den nationella höjdmodellen skapad av Lantmäteriet ska uppdateras. Ämnet var ett förslag från Lantmäteriet och huvudsyftet var att testa om UAS kan användas som komplettering till traditionell flygfotografering. Det blir allt vanligare att använda UAS inom till exempel geomatiken, eftersom det är ett bra verktyg när ett snabbt och effektivt resultat krävs. Lantmäteriet använder flygburen laserskanning vid genereringen av nationella höjdmodellen och den uppdateras med traditionell flygfotografering. Andra aspekter som undersökts i detta examensarbete var vilken mätosäkerhet kan uppnås med UAS vid framställandet av en DHM, vilken skillnad i lägesosäkerhet finns mellan studiens punktmoln jämfört med nationella höjdmodellen, samt mot punktmolnet genererat från traditionell flygfotografering och den ekonomiska aspekten vid användning av UAS. Detta utfördes genom att samla in data med hjälp av UAS över Furuvik, Gävle. Flyghöjden var 88 m över ett område på ca 1 ha. Därefter skapades en höjdmodell som kontrollerades enligt den tekniska specifikationen SIS-TS 21144:2013. I examensarbetet jämfördes punktmolnet som genererades från flygfoton tagna med UAS mot nationella höjdmodellen. Osäkerheten för den genererade höjdmodellen vid användandet av UAS visade ett bra resultat i höjd med en standardosäkerhet på 0,015 m. Punktmolnet genererat från Lantmäteriets bildmatchning låg 0,315-0,392 m under studiens punktmoln medan punktmolnet från laserskanningen låg 0,014-0,155 m över. Resultatet visade att användning av UAS är väldigt kostnadseffektivt när den nationella höjdmodellen över begränsade områden ska uppdateras. Det rekommenderas därför för Lantmäteriet att använda UAS för detta ändamål. Det blir mer än väl godkänt resultat och kostnaden är liten med tanke på resultatet, d.v.s. en metod för att verkligen kunna ajourhålla nationella höjdmodellen och komplettera traditionell flygfotografering över begränsade områden. Med denna metod slipper de vänta på att den traditionella flygfotograferingen ska ske. Tekniken går hela tiden framåt och inom en snar framtid kommer även laserskanning kunna ske med UAS. Det skulle vara intressant att se resultat av den metoden. Intressant skulle även vara att se om det i framtiden går att utesluta flygsignalering och verkligen kunna använda direkt georeferering för att spara tid ute i fält. / In this thesis we are going to investigate possibility of using UAS, over small areas, for updating national elevation model produced by the National Land Survey of Sweden. The subject of the thesis was proposed by the National Land Survey of Sweden. One of the main objectives of the study was to test if UAS can be used as a complement to traditional aerial photo. The use of UAS has increased over the years within for example geomatics, because it is a great tool when quick and effective results are required. The National Land Survey of Sweden uses airborne laser scanning to generate the national elevation model. The elevation model is then updated by traditional aerial photogrammetry. Other objectives that have been investigated in this study are what uncertainty can be expected with UAS when generating a DEM, the differences in uncertainty between the point cloud generated in this study to the national height model and to the point cloud generated from the traditional photogrammetry and the economic aspects when using UAS. For this purpose data was collected by UAS in Furuvik, Gävle. The flight height was 88 m over the area of about 1 ha. Then a DEM was created and controlled according to the technical specification SIS-TS 21144:2013. In this thesis a comparison between the point cloud generated in this study and the national elevation model has been performed. Uncertainty of the produced DEM using UAS showed very good result in height with a standard deviation of 0.015 m. The point cloud generated from the traditional photogrammetry was 0.315-0.392 m below the point cloud generated in this study, while the point cloud from laser scanning was 0.014-0.155 m above. The results showed that using UAS are very cost-effective to update the national elevation model. It is advisable for the National Land Survey of Sweden to update the national height model over small areas with this method. There will be more than efficient and the costs are small considering the result. In other word this method is to recommend when updating the national elevation model and can be used as a complement to traditional photogrammetry within limited areas. With this method, they will not have to wait for the traditional aerial photography to take place. The technology is constantly moving forward and in the near future laser scanning with UAS will occur. It would be interesting to see the results of that method. It would also be interesting to see if it is possible to exclude the ground control points, and really be able to use direct georeferencing to save time in the field.
20

Utvärdering av höjdosäkerhet i digital terrängmodell framtagen med fotografier infångade med DJI Phantom 4 RTK

Bååth, Maya, Jonsson, Frida January 2020 (has links)
Att använda obemannade flygfarkoster, även kallat UAS (unmanned aerial systems), i karterings- och modelleringssyften har blivit en välanvänd metod de senaste åren. Mycket på grund av den tekniska utvecklingen som till stor del automatiserat processen med att framställa höjdmodeller och ortofoton. Inom ramen för denna studie kommer vi att titta närmare på hur olika faktorer påverkar höjdosäkerheten hos en höjdmodell framställd med data insamlat med en Real-Time Kinetic-UAS (RTK-UAS). Studien kommer dels att undersöka hur stor osäkerheten blir om endast den integrerade nätverks-RTK:n (NRTK) används vid georeferering av flygbilderna, dels att se hur stor påverkan adderade markstödpunkter har på osäkerheten. Studien kommer även undersöka hur stor påverkan flyghöjden har på osäkerheten genom att jämföra data från två flyghöjder: 100 m och 50 m. Det sista studien som undersöks är vilken inverkan snedbilder har på osäkerheten. Detta genom att jämföra en flygning där lodbilder tagits med en flygning där kameran har haft en vinkling på 60° från lod. Studien genomfördes med hjälp av Falun kommuns mättekniker som manövrerade UAS:en. För att kunna testa markstödpunkternas inverkan på osäkerheten mättes nio punkter in. Även kontrollprofiler mättes för att kunna kontrollera höjdmodellerna som producerades. Totalt genomfördes 3 olika flygningar: 100 m med lodbilder, 50 m med lodbilder samt 50 m med snedbilder. De insamlade fotografierna importerades till programvaran Agisoft Metashape där de georefererades med olika metoder. För att undersöka hur markstödpunkter påverkar osäkerheten genomfördes fem olika georefereringsmetoder av fotografierna tagna på 100 m flyghöjd med olika antal markstödpunkter i varje. RMS-värdet varierade från 0,060 m för NRTK + 1 GCP till 0,068 m för NRTK+2 GCP som fick den högsta osäkerheten.Undersökningen av flyghöjder visade att en lägre flyghöjd har en tydlig effekt på mätosäkerheten. En minskning av RMS-värdet sågs när 50 m flyghöjd användes jämfört med när 100 m flyghöjd användes. Användningen av snedbilder gav ingen tydlig effekt på mätosäkerheten. RMS-värdet blev 0,014 m då lodbilder användes och 0,017 m då snedbilder användes. Snedbildernas resultat försämrades något på grund av den adderade höjden från gräset, så på endast hårdgjorda ytor blir RMS-värdet från snedbildsflygningen noterbart lägre än RMS-värdet från lodbildsflygningen. / The technology of Unmanned Aerial Systems (UAS) has gained popularity as atool for mapping and modeling applications in recent years. This is mainly dueto the technological developments that have largely automated the process ofproducing digital elevation models (DEMs) and orthophotos. This study investigates the factors that effect the height uncertainty in anelevation model that is produced with data collected with a NRTK-UAS(Network Real-Time Kinematic UAS). We also evaluate two differentscenarios i.e. how the uncertainty is affected by using only NRTK-UAS andthe effect of adding ground control points (GCPs) to NRTK-UAS. It is alsoinvestigated how the flying height and using oblique images affect the DEMuncertainty. This will be assessed by comparing two flights i.e. by capturingnadiral and oblique images. The oblique images were captured at a 60° angle. The study was realised with help from the surveying engineer of Falunmunicipality, who maneuvered the UAS. The study area was around three anda half ha and consisted mainly of park. To be able to test differentgeoreferencing methods GCP:s were surveyed, as well as control profiles thatserved as a reference for investigating the uncertainty of the elevation model.There were totally 3 different flying methods tested: 100 m with nadiralorientation, 50 m with nadiral orientation and 50 m with oblige orientation. The acquired data was processed in the software Agisoft Metashape, where itwas georeferenced with different above-mentioned methods. To be able toexamine which impact GCP has on the uncertainty, five different sets withdifferent number of GCP were made with the photos captured from 100 mflying height. The RMS value varied from 0,060 m for NRTK+1 GCP whichhad the lowest RMS value to 0,068 m for NRTK+2 GCP which had the highest RMS value. We used the combination of NRTK-UAS and GCPs for testing the impact offlying height on the uncertainty. The flying heights 100 m and 50 m wascompared. A decrease of the uncertainty was observed when the flying heightwas 50 m instead of 100 m. Our results show that the RMS-value increased from 0,014 m to 0,017 musing nadiral and oblique images, respectively. The difference is too small tobe able to draw a conclusion. The results for the oblique images improvedwhen only hard surfaces such as asphalt, concrete etc. were observed.

Page generated in 0.0659 seconds