• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 286
  • 269
  • 116
  • 111
  • 87
  • 82
  • 73
  • 68
  • 64
  • 61
  • 59
  • 57
  • 57
  • 55
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Dissecting the Role of a lncRNA and Involvement of <em>Plasmodium</em> Infections in the Innate Immune Response: A Dissertation

Chan, Jennie 14 April 2015 (has links)
The innate immune system is a multicomponent response governed by intricate mechanisms of induction, regulation and resolution to elicit antimicrobial defenses. In recent years, the complexity of eukaryotic transcriptomes has become the subject of intense scrutiny and curiosity. It has been established, that RNA polymerase II (RNAPII) transcribes hundreds to thousands of long noncoding RNAs (lncRNAs), often in a stimulus and cell-type specific manner. However, the functional significance of these transcripts has been particularly controversial. While the number of identified lncRNAs is growing, our understanding of how lncRNAs themselves regulate other genes is quite limited. In chapter 2, a novel lncRNA is identified, more specifically, a natural antisense transcript, that mediates the transcription of the pro-inflammatory cytokine IL-1α. Through loss-of-function studies, I report the necessity of this transcript in mediating IL-1α mRNA expression by affecting RNAPII binding to the IL-1α promoter after toll-like receptor signaling. For the first time, I show that IL-1α is regulated at the transcriptional level. As a second independent component of this thesis, we explore the role of the innate immune response after infection by the malaria-causing parasite, Plasmodium berghei ANKA (PbA), and how innate immune components are both beneficial and detrimental to the host depending on when and where inflammation is triggered during infection. We attempt to identify the “malarial toxin” responsible for aberrations in the immune response that is detrimental for disease outcomes and the innate signaling pathways that are involved. Many pathogens induce pathological inflammatory conditions that lead to irreparable homeostatic imbalances and become fatal to the host. Here, type I Interferon signaling is required to dampen parasite load during liver-stage infections, but leads to host mobidity if these pathways are activated in the erythrocytic phase of infection. Together, this thesis provides new insights on how components of the innate immune system are regulated, and how dysregulation of immunity can potentially lead to adverse effects during active infections.
232

Regulation of Higher Order Chromatin at GRIN2B and GAD1 Genetic Loci in Human and Mouse Brain: A Dissertation

Bharadwaj, Rahul 14 February 2013 (has links)
Little is known about higher order chromatin structures in the human brain and their function in transcription regulation. We employed chromosome conformation capture (3C) to analyze chromatin architecture within 700 Kb surrounding the transcription start site (TSS) of the NMDA receptor and schizophrenia susceptibility gene, GRIN2B, in human and mouse cerebral cortex. Remarkably, both species showed a higher interaction between the TSS and an intronic sequence, enriched for (KRAB) Krueppel associated Box domain binding sites and selectively targeted by the (H3K9) histone 3 lysine 9 specific methyltransferase ESET/SETDB1. Transgenic mice brain cortical nuclei over-expressing Setdb1 showed increased heterochromatin-protein 1 signal at the interacting regions coupled with decreased Grin2b expression. 3C further revealed three long distant chromatin loop interactions enriched with functional enhancer specific (H3K27Ac) histone 3 lysine 27 acetylation signal in GRIN2B expressing tissue (human cortical nuclei and Human Embryonic Kidney - HEK cells). Doxycycline-induced SETDB1 over-expression decreased 2 out of 3 loop interaction frequencies suggesting a possible SETDB1-mediated transcription repression. We also report a specific looping interaction between a region 50Kb upstream of the (GAD1) Glutamic Acid Decarboxylase – 1 gene TSS and the GAD1 TSS in human brain nuclei. GAD1 catalyzes the rate limiting step in (GABA) gamma amino-butyric acid synthesis and is quintessential for inhibitory signaling in the human brain. Clinical studies in schizophrenia brain samples reveal a decreased looping interaction frequency in correspondence with a decrease in gene expression. Our findings provide evidence for the existence of transcription relevant higher order chromatin structures in human brain.
233

Adjuvant-Specific Serum Cytokine Profiles in the Context of a DNA Prime-Protein Boost HIV-1 Vaccine: A Dissertation

Buglione-Corbett, Rachel 29 April 2013 (has links)
In recent years, heterologous prime-boost vaccination constructs have emerged as a promising strategy to generate broad and protective immunity against a variety of pathogens. The utility of DNA vaccination in priming the immune system, in particular, has improved the immunogenicity of vaccines against difficult pathogens such as HIV-1. In addition, many vaccine formulations include an adjuvant to augment immune responses. However, the mechanisms and profiles of many adjuvants remain largely unknown, particularly in the context of such combination immunization approaches. My thesis research studied the effects of several adjuvants, QS-21, aluminum hydroxide, MPL, and ISCOMATRIX™ adjuvant in the context of a previously described pentavalent HIV-1 Env DNA prime-protein boost vaccine, DP6-001. In a murine model, we quantified HIV antigen-specific humoral and T cell responses, as well as pro-inflammatory serum cytokine and chemokines, both shortly after immunization and at the termination of studies. Our data indicates that each candidate adjuvant generates a unique pattern of biomarkers as well as improved immunogenicity in the context of the DP6-001 DNA prime-protein boost vaccine. Additionally, we examined the impact of several innate signaling pathways on the adaptive immunity raised by DP6-001 and adjuvants, as well as on the unique serum cytokine profiles. These studies provide valuable information in selection of an adjuvant for inclusion in future prime-boost strategies, with the goal of enhancing immunogenicity while minimizing reactogenicity. Furthermore, these studies provided insight about the utility of different current adjuvants in a prime-boost formulation, and the unique immune environment induced by DNA priming.
234

Genetic Deficiency of CD40 in Mice Exacerbates Metabolic Manifestations of Diet-induced Obesity: A Dissertation

Guo, Chang-An 23 April 2013 (has links)
The past two decades have seen an explosive increase of obesity rates worldwide, with more than one billion adults overweight and 300 million of them obese. Obesity and its associated complications have become leading causes of morbidity and mortality in the United States and major contributing factors to the rising costs of national health care. The pathophysiology of obesity and type 2 diabetes in rodents and humans is characterized by low-grade inflammation and chronic activation of immune pathways in adipose tissue and liver. The CD40 receptor and its ligand, CD40L, initiate immune cell signaling promoting inflammation, but conflicting data on CD40L-null mice confound its role in obesity-associated insulin resistance. A clear understanding of how CD40 and its ligand communicate to regulate and sustain the inflammatory environment of obesity is lacking. Here we demonstrate that CD40 receptor deficient mice on a high-fat diet display the expected decrease in hepatic cytokine levels, but paradoxically exhibit liver steatosis, insulin resistance and glucose intolerance compared with their age-matched wild-type controls. Hyperinsulinemic-euglycemic clamp studies also demonstrated insulin resistance in glucose utilization by the CD40-null mice compared with wild-type mice. In contrast to liver, visceral adipose tissue in CD40 deficient animals harbors elevated cytokine levels and infiltration of inflammatory cells, particularly macrophages and CD8+ effector T cells. In addition, ex vivo explants of epididymal adipose tissue from CD40-null mice display elevated basal and isoproterenol-stimulated lipolysis, suggesting a potential increase of lipid efflux from visceral fat to the liver. These findings reveal that 1) CD40-null mice represent an unusual model of hepatic steatosis with reduced hepatic inflammation, and 2) CD40 unexpectedly functions in adipose tissue to attenuate the chronic inflammation associated with obesity, thereby protecting against hepatic steatosis.
235

Outpatient Emergency Department Utilization: Measurement and Prediction: A Dissertation

Lines, Lisa M. 30 April 2014 (has links)
Approximately half of all emergency department (ED) visits are primary-care sensitive (PCS) – meaning that they could potentially be avoided with timely, effective primary care. Reducing undesirable types of healthcare utilization (including PCS ED use) requires the ability to define, measure, and predict such use in a population. In this retrospective, observational study, we quantified ED use in 2 privately insured populations and developed ED risk prediction models. One dataset, obtained from a Massachusetts managed-care network (MCN), included data from 2009-11. The second was the MarketScan database, with data from 2007-08. The MCN study included 64,623 individuals enrolled for at least 1 base-year month and 1 prediction-year month in Massachusetts whose primary care provider (PCP) participated in the MCN. The MarketScan study included 15,136,261 individuals enrolled for at least 1 base-year month and 1 prediction-year month in the 50 US states plus DC, Puerto Rico, and the US Virgin Islands. We used medical claims to identify principal diagnosis codes for ED visits, and scored each according to the New York University Emergency Department algorithm. We defined primary-care sensitive (PCS) ED visits as those in 3 subcategories: nonemergent, emergent but primary-care treatable, and emergent but preventable/avoidable. We then: 1) defined and described the distributions of 3 ED outcomes: any ED use; number of ED visits; and a new outcome, based on the NYU algorithm, that we call PCS ED use; 2) built and validated predictive models for these outcomes using administrative claims data; 3) compared the performance of models predicting any ED use, number of ED visits, and PCS ED use; 4) enhanced these models by adding enrollee characteristics from electronic medical records, neighborhood characteristics, and payor/provider characteristics, and explored differences in performance between the original and enhanced models. In the MarketScan sample, 10.6% of enrollees had at least 1 ED visit, with about half of utilization scored as PCS. For the top risk group (those in the 99.5th percentile), the model’s sensitivity was 3.1%, specificity was 99.7%, and positive predictive value (PPV) was 49.7%. The model predicting PCS visits yielded sensitivity of 3.8%, specificity of 99.7%, and PPV of 40.5% for the top risk group. In the MCN sample, 14.6% (±0.1%) had at least 1 ED visit during the prediction period, with an overall rate of 18.8 (±0.2) visits per 100 persons and 7.6 (±0.1) PCS ED visits per 100 persons. Measuring PCS ED use with a threshold-based approach resulted in many fewer visits counted as PCS, discarding information unnecessarily. Out of 45 practices, 5 to 11 (11-24%) had observed values that were statistically significantly different from their expected values. Models predicting ED utilization using age, sex, race, morbidity, and prior use only (claims-based models) had lower R2 (ranging from 2.9% to 3.7%) and poorer predictive ability than the enhanced models that also included payor, PCP type and quality, problem list conditions, and covariates from the EMR, Census tract, and MCN provider data (enhanced model R2 ranged from 4.17% to 5.14%). In adjusted analyses, age, claims-based morbidity score, any ED visit in the base year, asthma, congestive heart failure, depression, tobacco use, and neighborhood poverty were strongly associated with increased risk for all 3 measures (all P<.001).
236

Computational Approaches for the Analysis of Chromosome Conformation Capture Data and Their Application to Study Long-Range Gene Regulation: A Dissertation

Lajoie, Bryan R. 10 February 2016 (has links)
Over the last decade, development and application of a set of molecular genomic approaches based on the chromosome conformation capture method (3C), combined with increasingly powerful imaging approaches have enabled high resolution and genome-wide analysis of the spatial organization of chromosomes. The aim of this thesis is two-fold; 1), to provide guidelines for analyzing and interpreting data obtained from genome-wide 3C methods such as Hi-C and 3C-seq and 2), to leverage the 3C technology to solve genome function, structure, assembly, development and dosage problems across a broad range of organisms and disease models. First, through the introduction of cWorld, a toolkit for manipulating genome structure data, I accelerate the pace at which *C experiments can be performed, analyzed and biological insights inferred. Next I discuss a set of practical guidelines one should consider while planning an experiment to study the structure of the genome, a simple workflow for data processing unique to *C data and a set of considerations one should be aware of while attempting to gain insights from the data. Next, I apply these guidelines and leverage the cWorld toolkit in the context of two dosage compensation systems. The first is a worm condensin mutant which shows a reduction in dosage compensation in the hermaphrodite X chromosomes. The second is an allele-specific study consisting of genome wide Hi-C, RNA-Seq and ATAC-Seq which can measure the state of the active (Xa) and inactive (Xi) X chromosome. Finally I turn to studying specific gene – enhancer looping interactions across a panel of ENCODE cell-lines. These studies, when taken together, further our understanding of how genome structure relates to genome function.
237

Understanding Drug Resistance and Antibody Neutralization Escape in Antivirals: A Dissertation

Prachanronarong, Kristina L. 06 April 2016 (has links)
Antiviral drug resistance is a major problem in the treatment of viral infections, including influenza and hepatitis C virus (HCV). Influenza neuraminidase (NA) is a viral sialidase on the surface of the influenza virion and a primary antiviral target in influenza. Two subtypes of NA predominate in humans, N1 and N2, but different patterns of drug resistance have emerged in each subtype. To provide a framework for understanding the structural basis of subtype specific drug resistance mutations in NA, we used molecular dynamics simulations to define dynamic substrate envelopes for NA to determine how different patterns of drug resistance have emerged in N1 and N2 NA. Furthermore, we used the substrate envelope to analyze HCV NS3/4A protease inhibitors in clinical development. In addition, influenza hemagglutinin (HA) is a primary target of neutralizing antibodies against influenza. Novel broadly neutralizing antibodies (BnAbs) against the stem region of HA have been described and inhibit several influenza viral subtypes, but antibody neutralization escape mutations have emerged. We identified potential escape mutations in broadly neutralizing antibody F10 that may impact protein dynamics in HA that are critical for function. We also solved crystal structures of antibody fragments that are important for understanding the structural basis of antibody binding for influenza BnAbs. These studies can inform the design of improved therapeutic strategies against viruses by incorporating an understanding of structural elements that are critical for function, such as substrate processing and protein dynamics, into the development of novel therapeutics that are robust against resistance.
238

Yeast Upf1 Associates With RibosomesTranslating mRNA Coding Sequences Upstream of Normal Termination Codons: A Dissertation

Min, Ei Ei 15 April 2015 (has links)
Nonsense-mediated mRNA decay (NMD) specifically targets mRNAs with premature translation termination codons for rapid degradation. NMD is a highly conserved translation-dependent mRNA decay pathway, and its core Upf factors are thought to be recruited to prematurely terminating mRNP complexes, possibly through the release factors that orchestrate translation termination. Upf1 is the central regulator of NMD and recent studies have challenged the notion that this protein is specifically targeted to aberrant, nonsense-containing mRNAs. Rather, it has been proposed that Upf1 binds to most mRNAs in a translation-independent manner. In this thesis, I investigated the nature of Upf1 association with its substrates in the yeast Saccharomyces cerevisiae. Using biochemical and genetic approaches, the basis for Upf1 interaction with ribosomes was evaluated to determine the specificity of Upf1 association with ribosomes, and the extent to which such binding is dependent on prior association of Upf1’s interacting partners. I discovered that Upf1 is specifically associated with Rps26 of the 40S ribosomal subunit, and that this association requires the N-terminal Upf1 CH domain. In addition, using selective ribosome profiling, I investigated when during translation Upf1 associates with ribosomes and showed that Upf1 binding was not limited to polyribosomes that were engaged in translating NMD substrate mRNAs. Rather, Upf1 associated with translating ribosomes on most mRNAs, binding preferentially as ribosomes approached the 3’ ends of open reading frames. Collectively, these studies provide new mechanistic insights into NMD and the dynamics of Upf1 during translation.
239

The Effects of Family and Social Engagement on the Screen Time of Youth with Developmental Disabilities: A Dissertation

Lo, Charmaine B. 20 May 2013 (has links)
Developmental disabilities (DEVDIS) such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASD), developmental delay (DD), and learning disabilities, affect 14% of US youth, who also experience higher rates of obesity, approximately 19%, than youth without these conditions. Screen time is a risk factor for obesity, though it is not well-studied among youth with developmental disabilities. Youth with developmental disabilities experience challenges with learning, have underdeveloped social skills, and problematic behaviors. These predispositions can often result in peer rejection. The resulting social isolation may make these youth particularly vulnerable to engaging in solitary activities such as screen time. The objectives of this dissertation were to compare screen time rates among youth with developmental disabilities to typically developing youth and to examine the associations between social and family engagement with screen time among youth with developmental disabilities. Data from the 2007 National Survey of Children’s Health (NSCH), a national cross-sectional study that assesses the physical and emotional health of US children (N = 91,642), were used. Youth 6-17 years, with ADHD (n = 7,024), ASD (n = 1,200), DD (n = 3,276), LD (n = 7,482), and without special health care needs (n = 44,461) were studied. Unadjusted analyses found that children with DEVDIS engage in higher rates of screen time than youth without special health care needs. For youth with DEVDIS who were medicated for their ADHD, these associations attenuated. Thus ADHD symptoms, a common comorbidity across developmental disabilities, drove associations between the other developmental disabilities and screen time. Across all developmental disability groups, television in the bedroom was a significant screen time risk factor in both children and adolescents. Among children with ADHD, additional screen time risk factors included lack of caregiver knowledge of the child’s friends and any social engagement outside of the household. Among adolescents with ADHD, additional screen time risk factors included lower frequency that caregiver attends adolescent’s events and sport social engagement. Findings of this dissertation elucidate modifiable screen time risk factors that could potentially be adapted to decrease screen time among youth with developmental disabilities.
240

Sentinel Lymph Node Biopsy in Elderly Patients with Intermediate Thickness Melanoma: A Masters Thesis

Dinh, Kate H. 14 May 2015 (has links)
Background: A landmark study suggested that wide excision of intermediate-thickness melanoma with sentinel lymph node biopsy (SLNB) and subsequent completion lymph node dissection (CLND) for regional disease may improve prognostication and disease-free survival (DFS) compared with those undergoing wide excision alone. However, these benefits were relatively small and not associated with an improvement in disease-specific survival (DSS). It remains unknown if SLNB and subsequent treatments are beneficial in elderly patients who have a decreased overall (OS) due to other causes. Methods: Adults ≥ 70 years of age, who underwent surgical intervention for intermediate-thickness cutaneous melanoma from 2000-2013 were identified from a prospectively-maintained database. Clinicopathologic variables measured included age, gender, anatomic site, histologic type, tumor thickness, ulceration, receipt and result of SLNB, completion of CLND, OS, and DFS. Results: Ninety-one patients underwent excision of an intermediate-thickness melanoma. Forty-nine patients (54%) received a SLNB. Seven of these biopsies (14%) were positive, and five patients went on to receive CLND. Five-year OS was 41% in patients who did not receive SLNB and 52% in patients who did receive SLNB (p=0.11). DFS was similar between groups independent of receipt of SLNB. Conclusion: Among elderly patients with intermediate-thickness melanoma, patients who received SLNB had similar 5-year OS and DFS compared with those who did not receive SLNB. Routine SLNB for intermediate-thickness melanoma patients may not significantly change outcomes for this age group, and clinical decision-making should consider individual patient comorbidities and goals of care.

Page generated in 0.0558 seconds