281 |
Helicopter Blade Tip Vortex Modifications in Hover Using Piezoelectrically Modulated BlowingVasilescu, Roxana 01 December 2004 (has links)
Aeroacoustic investigations regarding different types of helicopter noise have indicated that the most annoying noise is caused by impulsive blade surface pressure changes in descent or forward flight conditions. Blade Vortex Interaction (BVI) is one of the main phenomena producing significant impulsive noise by the unsteady fluctuation in blade loading due to the rapid change of induced velocity field during interaction with vortices shed from previous blades. The tip vortex core structure and the blade vortex miss distance were identified as having a primary influence on BVI.
In this thesis, piezoelectrically modulated and/or vectored blowing at the rotor blade tip is theoretically investigated as an active technique for modifying the structure of the tip vortex core as well as for increasing blade vortex miss distance. The mechanisms of formation and convection of rotor blade tip vortices up to and beyond 360 degrees wake age are described based on the CFD results for the baseline cases of a hovering rotor with rounded and square tips. A methodology combining electromechanical and CFD modeling is developed and applied to the study of a piezoelectrically modulated and vectored blowing two-dimensional wing section. The thesis is focused on the CFD analysis of rotor flow with modulated tangential blowing over a rounded blade tip, and with steady mid-plane blade tip blowing, respectively. Computational results characterizing the far-wake flow indicate that for steady tangential blowing the miss distance can be doubled compared to the baseline case, which may lead to a significant reduction in BVI noise level if this trend shown in hover can be replicated in low speed forward flight. Moreover, near-wake flow analysis show that through modulated blowing a higher dissipation of vorticity can be obtained.
|
282 |
Active Flutter Suppression Of A Smart FinKaradal, Fatih Mutlu 01 September 2008 (has links) (PDF)
This study presents the theoretical analysis of an active flutter suppression methodology applied to a smart fin. The smart fin consists of a cantilever aluminum plate-like structure with surface bonded piezoelectric (PZT, Lead- Zirconate-Titanate) patches.
A thermal analogy method for the purpose of modeling of piezoelectric actuators in MSC® / /NASTRAN based on the analogy between thermal strains and piezoelectric strains was presented. The results obtained by the thermal analogy were compared with the reference results and very good agreement was observed.
The unsteady aerodynamic loads acting on the structure were calculated by using a linear two-dimensional Doublet-Lattice Method available in MSC® / /NASTRAN. These aerodynamic loads were approximated as rational functions of the Laplace variable by using one of the aerodynamic approximation schemes, Roger& / #8217 / s approximation, with least-squares method. These approximated aerodynamic loads together with the structural matrices obtained by the finite element method were used to develop the aeroelastic equations of motion of the smart fin in state-space form.
The Hinf robust controllers were then designed for the state-space aeroelastic model of the smart fin by considering both SISO (Single-Input Single-Output) and MIMO (Multi-Input Multi-Output) system models. The verification studies of the controllers showed satisfactory flutter suppression performance around the flutter point and a significant improvement in the flutter speed of the smart fin was also observed.
|
283 |
Dynamic control of aerodynamic forces on a moving platform using active flow controlBrzozowski, Daniel Paul 15 November 2011 (has links)
The unsteady interaction between trailing edge aerodynamic flow control and airfoil motion in pitch and plunge is investigated in wind tunnel experiments using a two degree-of-freedom traverse which enables application of time-dependent external torque and forces by servo motors. The global aerodynamic forces and moments are regulated by controlling vorticity generation and accumulation near the trailing edge of the airfoil using hybrid synthetic jet actuators. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and particle image velocimetry (PIV) measurements that are taken phase-locked to the commanded actuation waveform. The effect of the unsteady motion on the model-embedded flow control is assessed in both trajectory tracking and disturbance rejection maneuvers. The time-varying aerodynamic lift and pitching moment are estimated from a PIV wake survey using a reduced order model based on classical unsteady aerodynamic theory. These measurements suggest that the entire flow over the airfoil readjusts within 2-3 convective time scales, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales that are commensurate with the flow's convective time scale, and that the maneuver response is primarily limited by the inertia of the platform.
|
284 |
Pastato aktyviosios šiluminės talpos įtaka patalpų mikroklimatui bei energijos poreikiams / Influence of active heat capacity on microclimate and energy demand of a buildingValančius, Kęstutis 22 March 2007 (has links)
The main aim of the work is to investigate unsteady indoor thermal factors’ influence on premises microclimate, energy demand and installed heat power. Tasks of the work: 1. To investigate evaluation methods of thermal characteristics of a building which have influence on unsteady heat transfer, and to point out the main and determining factors. 2. To investigate dynamic thermal characteristics of a building in an experimental way. 3. To describe unsteady heat transfer processes in buildings on the basis of energy conservation law for a control volume with the help of active heat capacity conception and to adapt calculation methods for practical use. 4. To estimate the influence of active heat capacity on premises microclimate, design heat power and energy use.
|
285 |
PERCH LANDING MANEUVERS AND CONTROL FOR A ROTATING-WING MAVLubbers, Jonathan Louis 01 January 2011 (has links)
This thesis addresses flight control of the perch landing maneuver for micro-aerial vehicles. A longitudinal flight model is constructed for a pigeon-sized aircraft. In addition to a standard elevator control surface, wing-rotation also considered as a non-standard actuator for increasing low-speed aerodynamic braking. Optimal state and control trajectories for the perch landing maneuver are computed using commercial software. A neighboring optimal control law is then developed and implemented in a set of flight simulations. Simulations are run with both a quasisteady and an unsteady aerodynamic model. The effectiveness of wing rotation and of the neighboring optimal control law is discussed, as is the importance of unsteady aerodynamics during the maneuver. Wing rotation was found to be minimally effective in this case, but it showed potential to be more effective in further research. The unsteady aerodynamic model has significant influence over the success or failure of the maneuver.
|
286 |
Instationäre Interaktion der Schaufelreihen beim Clocking der Leitreihen eines vierstufigen Niedergeschwindigkeits-Axialverdichters / Unsteady blade-row interaction and stator clocking of a four-stage low-speed axial compressorMüller, Lutz 08 May 2014 (has links) (PDF)
Ziel dieser Arbeit war, die Auswirkungen von Clocking der Leitreihen eines mehrstufigen Axialverdichters auf Potentiale hinsichtlich der Beeinflussung instationärer und stationärer Effekte zu untersuchen und zum grundlegenden Verständnis der instationären Schaufelinteraktion beizutragen. Dazu wurden über 2000 Leitgitterkonfigurationen vermessen, so dass der Einfluss von Clocking auf den Wirkungsgrad entlang der Kennlinie bei Auslegungsdrehzahl, auf die Schaufelgrenzschichten und auf die Betriebsgrenzen untersucht und dokumentiert werden konnte. Vor allem wurde so eine erhebliche Beeinflussung der Pumpgrenze gefunden, während das Grenzschichtverhalten auf den Schaufeln und der Wirkungsgrad im praktisch relevanten Bereich der Kennlinie kaum verändert wurden.
Hauptgegenstand der Untersuchungen war aber der Einfluss von Stator-Clocking auf die instationären Druckverteilungen und die resultierenden instationären Erregerkräfte an den Lauf- und Leitschaufeln. Die Vermessung der Auswirkungen der Positionierung jedes einzelnen Leitgitters wurde genutzt, um durch eine einfache Optimierung zwei geometrische Konfigurationen aller Leitgitter zu entwickeln. Die eine Konfiguration führte zu geringen aerodynamischen Erregerkräften an den Laufschaufeln aller Stufen, während die andere Konfiguration eine gleichmäßig hohe instationäre Anregung zur Folge hatte. Die Unterschiede der instationären Erregerkräfte zwischen den Konfigurationen waren erheblich und über weite Bereiche der Kennlinie unabhängig vom Betriebspunkt, ohne das die Konfiguration der Leitgitter geändert wurde.
Für eine umfassende Analyse der periodisch instationären, aerodynamischen Schaufelinteraktion wurden sowohl die Schaufeldruckverteilungen, als auch das Strömungsfeld in den axialen Schaufelzwischenräumen im Mittelschnitt der Beschaufelung für beide Clocking-Konfigurationen zeitgenau vermessen und vergleichend ausgewertet.
Aus diesen Analysen konnte mithilfe der Wellenmechanik eine einfache analytische Beschreibung der instationären Interaktion der Potentialfelder der Beschaufelung entwickelt werden. Für eine einzelne Stufe wurde mit diesem Modell die experimentell bestimmte Phasendifferenz der Druckschwankungen auf Druck- und Saugseite auf sehr einfache Weise nachgewiesen.
Damit liegt ein einfaches, analytisches Modell für die Beschreibung der komplexen Überlagerung der sich relativ zueinander bewegenden Druckfelder der Beschaufelung axialer Turbomaschinen vor, das für das physikalische Verständnis der instationären Schaufelinteraktion einen wertvollen Beitrag liefert.
|
287 |
Kinematic Optimization in Birds, Bats and OrnithoptersReichert, Todd 11 January 2012 (has links)
Birds and bats employ a variety of advanced wing motions in the efficient production of thrust. The purpose of this thesis is to quantify the benefit of these advanced wing motions, determine the optimal theoretical wing kinematics for a given flight condition, and to develop a methodology for applying the results in the optimal design of flapping-wing aircraft (ornithopters).
To this end, a medium-fidelity, combined aero-structural model has been developed that is capable of simulating the advanced kinematics seen in bird flight, as well as the highly non-linear structural deformations typical of high-aspect ratio wings. Five unique methods of thrust production observed in natural species have been isolated, quantified and thoroughly investigated for their dependence on Reynolds number, airfoil selection, frequency, amplitude and relative phasing. A gradient-based optimization algorithm has been employed to determined the wing kinematics that result in the minimum required power for a generalized aircraft or species in any given flight condition.
In addition to the theoretical work, with the help of an extended team, the methodology was applied to the design and construction of the world's first successful human-powered ornithopter. The Snowbird Human-Powered Ornithopter, is used as an example aircraft to show how additional design constraints can pose limits on the optimal kinematics.
The results show significant trends that give insight into the kinematic operation of natural species. The general result is that additional complexity, whether it be larger twisting deformations or advanced wing-folding mechanisms, allows for the possibility of more efficient flight. At its theoretical optimum, the efficiency of flapping-wings exceeds that of current rotors and propellers, although these efficiencies are quite difficult to achieve in practice.
|
288 |
Kinematic Optimization in Birds, Bats and OrnithoptersReichert, Todd 11 January 2012 (has links)
Birds and bats employ a variety of advanced wing motions in the efficient production of thrust. The purpose of this thesis is to quantify the benefit of these advanced wing motions, determine the optimal theoretical wing kinematics for a given flight condition, and to develop a methodology for applying the results in the optimal design of flapping-wing aircraft (ornithopters).
To this end, a medium-fidelity, combined aero-structural model has been developed that is capable of simulating the advanced kinematics seen in bird flight, as well as the highly non-linear structural deformations typical of high-aspect ratio wings. Five unique methods of thrust production observed in natural species have been isolated, quantified and thoroughly investigated for their dependence on Reynolds number, airfoil selection, frequency, amplitude and relative phasing. A gradient-based optimization algorithm has been employed to determined the wing kinematics that result in the minimum required power for a generalized aircraft or species in any given flight condition.
In addition to the theoretical work, with the help of an extended team, the methodology was applied to the design and construction of the world's first successful human-powered ornithopter. The Snowbird Human-Powered Ornithopter, is used as an example aircraft to show how additional design constraints can pose limits on the optimal kinematics.
The results show significant trends that give insight into the kinematic operation of natural species. The general result is that additional complexity, whether it be larger twisting deformations or advanced wing-folding mechanisms, allows for the possibility of more efficient flight. At its theoretical optimum, the efficiency of flapping-wings exceeds that of current rotors and propellers, although these efficiencies are quite difficult to achieve in practice.
|
289 |
On the Fundamental Unsteady Fluid Dynamics of Shock-Induced Flows through DuctsMendoza, Nicole Renee 03 October 2013 (has links)
Unsteady shock wave propagation through ducts has many applications, ranging from blast wave shelter design to advanced high-speed propulsion systems. The research objective of this study was improved fundamental understanding of the transient flow structures during unsteady shock wave propagation through rectangular ducts with varying cross-sectional area. This research focused on the fluid dynamics of the unsteady shock-induced flow fields, with an emphasis placed on understanding and characterizing the mechanisms behind flow compression (wave structures), flow induction (via shock waves), and enhanced mixing (via shock-induced viscous shear layers).
A theoretical and numerical (CFD) parametric study was performed, in which the effects of these parameters on the unsteady flow fields were examined: incident shock strength, area ratio, and viscous mode (inviscid, laminar, and turbulent). Two geometries were considered: the backward-facing step (BFS) geometry, which provided a benchmark and conceptual framework, and the splitter plate (SP) geometry, which was a canonical representation of the engine flow path. The theoretical analysis was inviscid, quasi-1D and quasi-steady; and the computational analysis was fully 2D, time-accurate, and viscous.
The theory provided the wave patterns and primary wave strengths for the BFS geometry, and the simulations verified the wave patterns and quantified the effects of geometry and viscosity. It was shown that the theoretical wave patterns on the BFS geometry can be used to systematically analyze the transient, 2D, viscous flows on the SP geometry. This work also highlighted the importance and the role of oscillating shock and expansion waves in the development of these unsteady flows. The potential for both upstream and downstream flow induction was addressed. Positive upstream flow induction was not found in this study due to the persistent formation of an upstream-moving shock wave. Enhanced mixing was addressed by examining the evolution of the unsteady shear layer, its instability, and their effects on the flow field. The instability always appeared after the reflected shock interaction, and was exacerbated in the laminar cases and damped out in the turbulent cases. This research provided new understanding of the long-term evolution of these confined flows. Lastly, the turbulent work is one of the few turbulent studies on these flows.
|
290 |
Computation Of External Flow Around Rotating BodiesGonc, L. Oktay 01 March 2005 (has links) (PDF)
A three-dimensional, parallel, finite volume solver which uses Roe' / s upwind flux differencing scheme for spatial and Runge-Kutta explicit multistage time stepping scheme for temporal discretization on unstructured meshes is developed for the unsteady solution of external viscous flow around rotating bodies. The main aim of this study is to evaluate the aerodynamic dynamic stability derivative coefficients for rotating missile configurations. Arbitrary Lagrangian Eulerian (ALE) formulation is adapted to the solver for the simulation of the rotation of the body. Eigenvalues of the Euler equations in ALE form has been derived. Body rotation is simply performed by rotating the entire computational domain including the body of the projectile by means of rotation matrices. Spalart-Allmaras one-euqation turbulence model is implemented to the solver. The solver developed is first verified in 3-D for inviscid flow over two missile configurations. Then inviscid flow over a rotating missile is tested. Viscous flux computation algorithms and Spalarat-Allmaras turbulence model implementation are validated in 2-D by performing calculations for viscous flow over flat plate, NACA0012 airfoil and NLR 7301 airfoil with trailing edge flap. The ALE formulation is validated in 2-D on a rapidly pitching NACA0012 airfoil. Afterwards three-dimensional validation studies for viscous, laminar and turbulent flow calculations are performed on 3-D flat plate problem. At last, as a validation test case, unsteady laminar and turbulent viscous flow calculations over a spinning M910 projectile configuration are performed. Results are qualitatively in agreement with the analytical solutions, experimental measurements and previous studies for steady and unsteady flow calculations.
|
Page generated in 0.057 seconds