• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 189
  • 58
  • 37
  • 21
  • 13
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 447
  • 220
  • 153
  • 127
  • 122
  • 94
  • 56
  • 46
  • 45
  • 44
  • 40
  • 38
  • 37
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Experimental and Computational Analysis of an Axial Turbine Driven by Pulsing Flow

Fernelius, Mark H. 01 April 2017 (has links)
Pressure gain combustion is a form of combustion that uses pressure waves to transfer energy and generate a rise in total pressure during the combustion process. Pressure gain combustion shows potential to increase the cycle efficiency of conventional gas turbine engines if used in place of the steady combustor. However, one of the challenges of integrating pressure gain combustion into a gas turbine engine is that a turbine driven by pulsing flow experiences a decrease in efficiency. The interaction of pressure pulses with a turbine was investigated to gain physical insights and to provide guidelines for designing turbines to be driven by pulsing flow. An experimental rig was built to compare steady flow with pulsing flow. Compressed air was used in place of combustion gases; pressure pulses were created by rotating a ball valve with a motor. The data showed that a turbine driven by full annular pressure pulses has a decrease in turbine efficiency and pressure ratio. The average decrease in turbine efficiency was 0.12 for 10 Hz, 0.08 for 20 Hz, and 0.04 for 40 Hz. The turbine pressure ratio, defined as the turbine exit total pressure divided by the turbine inlet total pressure, ranged from 0.55 to 0.76. The average decrease in turbine pressure ratio was 0.082 for 10 Hz, 0.053 for 20 Hz, and 0.064 for 40 Hz. The turbine temperature ratio and specific turbine work were constant. Pressure pulse amplitude, not frequency, was shown to be the main cause for the decrease in turbine efficiency. Computational fluid dynamics simulations were created and were validated with the experimental results. Simulations run at the same conditions as the experiments showed a decrease in turbine efficiency of 0.24 for 10 Hz, 0.12 for 20 Hz, and 0.05 for 40 Hz. In agreement with the experimental results, the simulations also showed that pressure pulse amplitude is the driving factor for decreased turbine efficiency and not the pulsing frequency. For a pulsing amplitude of 86.5 kPa, the efficiency difference between a 10 Hz and a 40 Hz simulation was only 0.005. A quadratic correlation between turbine efficiency and corrected pulse amplitude was presented with an R-squared value of 0.99. Incidence variation was shown to cause the change in turbine efficiency and a correlation between corrected incidence and corrected amplitude was established. The turbine geometry was then optimized for pulsing flow conditions. Based on the optimization results and observations, design recommendations were made for designing turbines for pulsing flow. The first design recommendation was to weight the design of the turbine toward the peak of the pressure pulse. The second design recommendation was to consider the range of inlet angles and reduce the camber near the leading edge of the blade. The third design recommendation was to reduce the blade turning to reduce the wake caused by pulsing flow. A new turbine design was created and tested following these design recommendations. The time-accurate validation simulation for a 10 Hz pressure pulse showed that the new turbine decreased the entropy generation by 35% and increased the efficiency by 0.04 (5.4%).
272

Wall-temperature effects on flame response to acoustic oscillations

Mejia, Daniel 20 May 2014 (has links) (PDF)
Combustion instabilities, induced by the resonant coupling of acoustics and combustion occur in many practical systems such as domestic boilers, gas turbine and rocket engines. They produce pressure and heat release fluctuations that in some extreme cases can provoke mechanical failure or catastrophic damage. These phenomena have been extensively studied in the past, and the basic driving and coupling mechanisms have already been identified. However, it is well known that most systems behave differently at cold start and in the permanent regime and the coupling between the temperature of the solid material and combustion instabilities still remains unclear. The aim of this thesis is to study this mechanism. This work presents an experimental investigation of combustion instabilities for a laminar premixed flame stabilized on a slot burner with controlled wall temperature. For certain operating conditions, the system exhibits a combustion instability locked on the Helmholtz mode of the burner. It is shown that this instability can be controlled and even suppressed by changing solely the temperature of the burner rim. A linear stability analysis is used to identify the parameters playing a role in the resonant coupling and retrieves the features observed experimentally. Detailed experimental studies of the different elementary processes involved in the thermo-acoustic coupling are used to evaluate the sensitivity of these parameters to the wall temperature. Finally a theoretical model of unsteady heat transfer from the flame root to the burner-rim and detailed experimental measurements permit to establish the physical mechanism for the temperature dependance on the flame response.
273

Coupling of time integration schemes for compressible unsteady flows

Muscat, Laurent 12 March 2019 (has links) (PDF)
This work deals with the design of a hybrid time integrator that couples spatially explicit and implicit time integrators. In order to cope with the industrial solver of Ariane Group called FLUSEPA, the explicit scheme of Heun and the implicit scheme of Crank-Nicolson are hybridized using the transition parameter : the whole technique is called AION time integration. The latter is studied into details with special focus on spectral behaviour and on its ability to keep the accuracy. It is shown that the hybrid technique has interesting dissipation and dispersion properties while maintaining precision and avoiding spurious waves. Moreover, this hybrid approach is validated on several academic test cases for both convective and diffusive fluxes. And as expected the method is more interesting in term of computational time than standard time integrators. For the extension of this hybrid approach to the temporal adaptive method implemented in FLUSEPA, it was necessary to improve some treatments in order to maintain conservation and acceptable spectral properties. Finally the hybrid time integration was also applied to a RANS/LES turbulent test case with interesting computational time while capturing the flow physics.
274

High frequency gas temperature and surface heat flux measurements

Iliopoulou, Vasiliki 14 September 2005 (has links)
Further improvements of the thermal efficiency of gas turbine cycle are closely coupled to the increase of turbine inlet temperature. This requires intensive and efficient cooling of the blades. In this perspective, experimental investigations of the gas temperature and heat transfer distribution around the airfoil are of primary importance. The present work aims at the development of two measurement techniques based on applications of the thin film sensors: the two-layer gauge for the wall heat transfer determination and the dual thin film probe for flow temperature measurements. Both techniques are used in short duration tunnels of the von Karman Institute (VKI) under engine representative conditions and are able to resolve both time-averaged component and time-resolved component i.e. periodic blade passing events at ~5-7 kHz with harmonics up to 50 kHz. In order to derive the wall heat flux with the two-layer gauge, the unsteady conduction equation is solved in the two-layer substrate using the measured value of the wall temperature as a boundary condition. The gauges are extensively calibrated and the data reduction method is validated on a blade of the second stator of the VKI turbine. A very good repeatability is achieved. Measurements are also performed on the complex geometry of a blade tip in a cascade configuration revealing the high three dimensionality of the flow. The dual thin film probe combines the operation of two thin films and determines the flow temperature from two independent heat flux measurements. The probe is calibrated and then validated with measurements downstream a cascade. The robustness and the reliability of the probe are also demonstrated by measurements downstream of the rotor and the second stator of the VKI turbine.
275

Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations : DNS and LES approaches

Cocle, Roger 24 August 2007 (has links)
This thesis is concerned with the numerical simulation of high Reynolds number, three-dimensional, incompressible flows in open domains. Many problems treated in Computational Fluid Dynamics (CFD) occur in free space: e.g., external aerodynamics past vehicles, bluff bodies or aircraft; shear flows such as shear layers or jets. In observing all these flows, we can remark that they are often unsteady, appear chaotic with the presence of a large range of eddies, and are mainly dominated by convection. For years, it was shown that Lagrangian Vortex Element Methods (VEM) are particularly well appropriate for simulating such flows. In VEM, two approaches are classically used for solving the Poisson equation. The first one is the Biot-Savart approach where the Poisson equation is solved using the Green's function approach. The unbounded domain is thus implicitly taken into account. In that case, Parallel Fast Multipole (PFM) solvers are usually used. The second approach is the Vortex-In-Cell (VIC) method where the Poisson equation is solved on a grid using fast grid solvers. This requires to impose boundary conditions or to assume periodicity. An important difference is that fast grid solvers are much faster than fast multipole solvers. We here combine these two approaches by taking the advantages of each one and, eventually, we obtain an efficient VIC-PFM method to solve incompressible flows in open domain. The major interest of this combination is its computational efficiency: compared to the PFM solver used alone, the VIC-PFM combination is 15 to 20 times faster. The second major advantage is the possibility to run Large Eddy Simulations (LES) at high Reynolds number. Indeed, as a part of the operations are done in an Eulerian way (i.e. on the VIC grid), all the existing subgrid scale (SGS) models used in classical Eulerian codes, including the recent "multiscale" models, can be easily implemented.
276

Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations : DNS and LES approaches

Cocle, Roger 24 August 2007 (has links)
This thesis is concerned with the numerical simulation of high Reynolds number, three-dimensional, incompressible flows in open domains. Many problems treated in Computational Fluid Dynamics (CFD) occur in free space: e.g., external aerodynamics past vehicles, bluff bodies or aircraft; shear flows such as shear layers or jets. In observing all these flows, we can remark that they are often unsteady, appear chaotic with the presence of a large range of eddies, and are mainly dominated by convection. For years, it was shown that Lagrangian Vortex Element Methods (VEM) are particularly well appropriate for simulating such flows. In VEM, two approaches are classically used for solving the Poisson equation. The first one is the Biot-Savart approach where the Poisson equation is solved using the Green's function approach. The unbounded domain is thus implicitly taken into account. In that case, Parallel Fast Multipole (PFM) solvers are usually used. The second approach is the Vortex-In-Cell (VIC) method where the Poisson equation is solved on a grid using fast grid solvers. This requires to impose boundary conditions or to assume periodicity. An important difference is that fast grid solvers are much faster than fast multipole solvers. We here combine these two approaches by taking the advantages of each one and, eventually, we obtain an efficient VIC-PFM method to solve incompressible flows in open domain. The major interest of this combination is its computational efficiency: compared to the PFM solver used alone, the VIC-PFM combination is 15 to 20 times faster. The second major advantage is the possibility to run Large Eddy Simulations (LES) at high Reynolds number. Indeed, as a part of the operations are done in an Eulerian way (i.e. on the VIC grid), all the existing subgrid scale (SGS) models used in classical Eulerian codes, including the recent "multiscale" models, can be easily implemented.
277

Realistic simulations of delta wing aerodynamics using novel CFD methods

Görtz, Stefan January 2005 (has links)
The overall goal of the research presented in this thesis is to extend the physical understanding of the unsteady external aerodynamics associated with highly maneuverable delta-wing aircraft by using and developing novel, more efficient computational fluid dynamics (CFD) tools. More specific, the main purpose is to simulate and better understand the basic fluid phenomena, such as vortex breakdown, that limit the performance of delta-wing aircraft. The problem is approached by going from the most simple aircraft configuration - a pure delta wing - to more complex configurations. As the flow computations of delta wings at high angle of attack have a variety of unusual aspects that make accurate predictions challenging, best practices for the CFD codes used are developed and documented so as to raise their technology readiness level when applied to this class of flows. Initially, emphasis is put on subsonic steady-state CFD simulations of stand-alone delta wings to keep the phenomenon of vortex breakdown as clean as possible. For half-span models it is established that the essential characteristics of vortex breakdown are captured by a structured CFD code. The influence of viscosity on vortex breakdown is studied and numerical results for the aerodynamic coefficients, the surface pressure distribution and breakdown locations are compared to experimental data where possible. In a second step, structured grid generation issues, numerical aspects of the simulation of this nonlinear type of flow and the interaction of a forebody with a delta wing are explored. Then, on an increasing level of complexity, time-accurate numerical studies are performed to resolve the unsteady flow field over half and full-span, stationary delta wings at high angle of attack. Both Euler and Detached Eddy Simulations (DES) are performed to predict the streamwise oscillations of the vortex breakdown location about some mean position, asymmetry in the breakdown location due to the interaction between the left and right vortices, as well as the rotation of the spiral structure downstream of breakdown in a time-accurate manner. The computed flow-field solutions are visualized and analyzed in a virtual-reality environment. Ultimately, steady-state and time-dependent simulations of a full-scale fighter-type aircraft configuration in steady flight are performed using the advanced turbulence models and the detached-eddy simulation capability of an edge-based, unstructured flow solver. The computed results are compared to flight-test data. The thesis also addresses algorithmic efficiency and presents a novel implicit-explicit algorithm, the Recursive Projection Method (RPM), for computations of both steady and unsteady flows. It is demonstrated that RPM can accelerate such computations by up to 2.5 times. / QC 20101019
278

Modelling and simulation of flexible aircraft : handling qualities with active load control

Andrews, Stuart P. 03 1900 (has links)
The study of the motion of manoeuvring aircraft has traditionally considered the aircraft to be rigid. This simplifying assumption has been shown to give quite accurate results for the flight dynamics of many aircraft types. As modern transport aircraft have developed however, there has been a marked increase in the size and weight of these aircraft. This trend is likely to continue with the development of future blended-wing-body and supersonic transport aircraft. This increase in size and weight has brought about a unique set of aeroelastic and handling quality issues. The aerodynamic forces and moments acting on an aeroplane have traditionally been represented using the aerodynamic derivative approach. It has been shown that this quasisteady aerodynamic model inadequately predicts the aircraft’s stability characteristics, and that the inclusion of unsteady aerodynamics “greatly improves the fidelity” of aircraft models. This thesis thus presents a novel numerical simulation of an aeroelastic aeroplane for real-time analysis. The model is built around the standard six degree-of-freedom equations of motion for a rigid aeroplane using the mean-axes system, and includes unsteady aerodynamics and structural dynamics. This is suitable for pilot-in-the-loop simulation, handling qualities and flight loads analysis, and control law development. The dynamics of the structure are modelled as a set of normal modes, and the equations of motion are realised in state-space form. The unsteady aerodynamic forces acting on the aeroplane are described by an indicial state-space model, including unsteady tailplane downwash and compressibility effects. An implementation of the model is presented in the MATLAB/ Simulink environment. The interaction between the flight control system, the aeroelastic system and the rigidbody motion of the aeroplane can result in degraded handling qualities, excessive actuator control, and fatigue problems. The introduction of load alleviation systems for the management of loads due to manoeuvres and gusts is also likely to result in the handling qualities of the aeroplane being degraded. This thesis presents a number of studies into the impact of structural dynamics, unsteady aerodynamics, and load alleviation on the handling qualities of a flexible civil transport aeroplane. The handling qualities of the aeroplane are assessed against a number of different handling qualities criteria and flying specifications, including the Neal-Smith, Bandwidth, and CAP criterion. It is shown that aeroelastic effects alter the longitudinal and lateral-directional characteristics of the aeroplane, resulting in degraded handling qualities. Manoeuvre and gust load alleviation are similarly found to degrade handling qualities, while active mode control is shown to offer the possibility of improved handling qualities.
279

The Application of Finite Element Methods to Aeroelastic Lifting Surface Flutter

Guertin, Matthew 06 September 2012 (has links)
Aeroelastic behavior prediction is often confined to analytical or highly computational methods, so I developed a low degree of freedom computational method using structural finite elements and unsteady loading to cover a gap in the literature. Finite elements are readily suitable for determination of the free vibration characteristics of eccentric, elastic structures, and the free vibration characteristics fundamentally determine the aeroelastic behavior. I used Theodorsen’s unsteady strip loading formulation to model the aerodynamic loading on linear elastic structures assuming harmonic motion. I applied Hassig’s ‘p-k’ method to predict the flutter boundary of nonsymmetric, aeroelastic systems. I investigated the application of a quintic interpolation assumed displacement shape to accurately predict higher order characteristic effects compared to linear analytical results. I show that quintic interpolation is especially accurate over cubic interpolation when multi-modal interactions are considered in low degree of freedom flutter behavior for high aspect ratio HALE aircraft wings.
280

Simulering av översvämningar i Byälven

Midboe, Finn, Persson, Håkan January 2004 (has links)
Severe floods caused by heavy autumn rains in year 2000 raised the question whether measures to reduce the damage from high water levels, in the area surrounding lake Glafsfjorden and along the river Byälven down to lake Vänern, are possible. One option is to reduce flow resistance along the river and thereby lower the maximum water level a given inflow would cause. Good knowledge of hydraulic and hydrological conditions is necessary in order to estimate the effect of such flow-reducing measures. In order to quantify such effect a 1-dimensional hydraulic flow model has been set up for the river Byälven using the software package MIKE 11. The model is more detailed, especially concerning topography and bathymetry, than earlier models used for studies of the river. Boundary conditions consist of measured inflows, the level of the lake Vänern and runoff calculated using the HBV-model. The model was calibrated for two different floods and a good fit to measured water levels was obtained for both these periods. Using the calibrated model critical sections, causing much flow resistance during high floods, were identified. With that knowledge different measures to reduce high water levels was adopted to the model both individually and combined with each other and the model was run with boundary conditions mainly from the flood in year 2000. The most radical measures simulated resulted in a lowering of the maximum water in the two largest reservoirs Glafsfjorden and Harefjorden with 78 and 97 cm respectively. A more modest combination of measures gave water levels 48 and 84 cm lower than a model run without changes. Some combinations of relatively small measures lowered the maximum water level by a few decimeters. The simulation results give good guidance to further investigations and decisions of actual changes. The model constitutes a useful tool when making flood maps of the area and if water level forecasts would be needed during future floods. / Allvarliga översvämningar i samband med höstregn år 2000 väckte frågan om det går att vidta åtgärder för att minska skadorna vid höga flöden i området runt Glafsfjorden och längs Byälvens sträckning ner till Vänern. Ett alternativ är att med åtgärder längs älven underlätta vattnets utflöde och på så sätt minska den högsta vattennivå ett givet flöde orsakar. God kunskap om hydrauliska och hydrologiska förhållanden behövs för att bedöma nyttan av olika åtgärdsalternativ. För att kunna avgöra effekterna av olika åtgärdsalternativ har en 1-dimensionell strömningsmodell satts upp för Byälven i programverktyget MIKE 11. Modellen är mer detaljerad, framförallt beträffande höjdinformationen, än tidigare modeller som använts för studier av Byälven varit. Randvillkor till modellen utgörs av registrerade inflöden, Vänerns vattenstånd och avrinning modellerad med HBV-modellen. Modellen har kalibrerats för två översvämningsperioder och god anpassning uppnåddes för de vattenstånd som dessa situationer representerar och med dess hjälp har sedan älven studerats och områden som bromsar flödet har kunnat identifieras. Med kunskap om vilka områden som begränsar flödet mest har ett antal olika åtgärder simulerats i modellen, både var för sig och kombinerade med varandra. Randvillkoren för översvämningen år 2000 behölls och förändringarna lades in i modellen. De extremaste åtgärderna som simulerats resulterade i minskningar av de högsta vattennivåerna i de två största vattenmagasinen Glafsfjorden och Harefjorden med 78 respektive 97 cm. Mer realistiska åtgärdspaket gav minskningar med i storleksordningen 48 respektive 84 cm och även relativt små ingrepp gav minskningar på några decimeter. Simuleringsresultaten ger god vägledning för vidare undersökningar av och beslut om konkreta åtgärder i Byälven. Dessutom utgör modellen ett bra verktyg för att ta fram översvämningskartor och för att prognostisera vattennivåer vid nya översvämningssituationer.

Page generated in 0.0607 seconds