301 |
Popis nestacionárních provozních stavů násoskové vírové turbiny / Description unsteady operating conditions of siphon swirl turbineKrejčiřík, Stanislav January 2017 (has links)
The master´s thesis focuses on the behavior of the siphon turbine during unsteady flow. There are two possible conditions. The first condition involves commissioning the turbine. In this situation turbine works like a pump. In the second case, it includes shutting down the turbine by aerating the siphon and thereby breaking the water column. This thesis deals with the second case, where the results of the experiment and the mathematical model are compared.
|
302 |
EXPERIMENTAL STUDIES ON FREE JET OF MATCH ROCKETS AND UNSTEADY FLOW OF HOUSEFLIESAngel David Lozano Galarza (10757814) 01 June 2021 (has links)
<p>The
aerodynamics of insect flight is not well understood despite it has been
extensively investigated with various techniques and methods. Its complexities
mainly have two folds: complex flow behavior and intricate wing morphology. The
complex flow behavior in insect flight are resulted from flow unsteadiness and
three-dimensional effects. However, most of the experimental studies on insect
flight were performed with 2D flow measurement techniques whereas the 3D flow
measurement techniques are still under developing. Even with the most advanced
3D flow measurement techniques, it is still impossible to measure the flow
field closed to the wings and body. On the other hand, the intricate wing
morphology complicates the experimental studies with mechanical flapping wings
and make mechanical models difficult to mimic the flapping wing motion of
insects. Therefore, to understand the authentic flow phenomena and associated
aerodynamics of insect flight, it is inevitable to study the actual flying
insects. </p>
<p>In
this thesis, a recently introduced technique of schlieren photography is first
tested on free jet of match rockets with a physics based optical flow method to
explore its potential of flow quantification of unsteady flow. Then the
schlieren photography and optical flow method are adapted to tethered and feely
flying houseflies to investigate the complex wake flow and structures. In the
end, a particle tracking velocimetry system: Shake the Box system, is utilized
to resolve the complex wake flow on a tethered house fly and to acquire some
preliminary 3D flow field data</p>
|
303 |
Evaluating Ecological Influences of Altered Flow Regimes Using Two- and Three-Dimensional Hydrodynamic ModelsShen, Yi 30 September 2009 (has links)
Reservoir releases for generating power need to be reconciled with efforts to maintain healthy ecosystems in regulated rivers having irregular channel topography. Fluctuating, complex flow patterns near river obstructions such as boulders and large woody debris provide unique habitat for many aquatic organisms. Numerical modeling of the flow structures surrounding these obstructions is challenging, yet it represents an important tool for aquatic habitat assessment. Moreover, efforts for modeling the morphologically and biologically important transient flows, as well as quantifying their impacts on physical fish habitat during the unsteady-flow period remain rare.
In this dissertation, the ability of two- (2-D) and three-dimensional (3-D) hydraulic models to reproduce the localized complex flow features at steady base and peak flows is examined first. The performance of the two hydraulic models is evaluated by comparing the numerical results with measurements of flow around a laboratory hemisphere and boulders located at a reach of the Smith River in Virginia. Close agreement between measured values and the velocity profiles predicted by the two models is obtained outside the wakes behind these obstructions. However, results suggest that in the vicinity of theses obstructions the 3-D model is better suited for reproducing the circulation flow behavior favored by many aquatic species over a broad range of flows.
Further, time-dependent flow features affecting channel morphology and aquatic physical habitat are investigated using the numerical models for the same reach in the Smith River. Temporal variation measurements of water surface elevation and velocity profile obtained in the field during a reservoir release are in good agreement with the numerical results. A hypothetical "staggering" flow release scenario simulated by the 3-D model leads to reduced erosional area and longer refugia availability for juvenile brown trout during hydropeaking. Finally, an unsteadiness parameter β is proposed for determining whether an unsteady flow regime can be either modeled using a truly dynamic flow approach or a quasi-steady flow method. / Ph. D.
|
304 |
Hydraulické posouzení rázových jevů v jezové zdrži Střekov / Hydraulic assessment of surge waves in the Strekov weir reservoirStříž, Jaroslav January 2019 (has links)
The main aim of the thesis is to assess the origin of surge phenomena, primarily surge waves at the weir pool Střekov, using the selected methodology. The paper is divided into several parts. There is a brief introduction to the problematics and research of possible solution methods, followed by a verification of these methods on a physical model and finally an application of a numerical method for an assessment of the chosen locality.
|
305 |
Simulations of Flow Over Wind TurbinesDigraskar, Dnyanesh A 01 January 2010 (has links) (PDF)
One of the most abundant sources of renewable energy is wind. Today, a considerable amount of resources are being utilized for research on harnessing the wind energy efficiently. Out of all the factors responsible for efficient energy production, the aerodynamics of flow around the wind turbine blades play an important role. This work aims to undertake aerodynamic analysis of a Horizontal Axis Wind Turbine. A steady state, incompressible flow solver for multiple reference frames, MRFSimple- Foam is modified and used for performing simulations of flow over National Renewable Energy Laboratory Phase VI wind turbine rotor. The code is first tested on a locally modeled wind turbine blade and is then validated by using the actual NREL rotor. The flow behavior is studied and a comparison of results from the simulations and the experimental wind tunnel data is presented. The ability of Computational Fluid Dynamics (CFD) techniques in simulating wind flow over entire wind turbine assembly is also displayed by carrying out moving mesh simulations of a full wind turbine.
|
306 |
Transonic Flutter for aGeneric Fighter Configuration / Transoniskt fladder för en generiskflygplanskonfigurationBååthe, Axel January 2018 (has links)
A hazardous and not fully understood aeroelastic phenomenon is the transonic dip,the decrease in flutter dynamic pressure that occurs for most aircraft configurationsin transonic flows. The difficulty of predicting this phenomenon forces aircraft manufacturersto run long and costly flight test campaigns to demonstrate flutter-free behaviourof their aircraft at transonic Mach numbers.In this project, subsonic and transonic flutter calculations for the KTH-NASA genericfighter research model have been performed and compared to existing experimentalflutter data from wind tunnel tests performed at NASA Langley in 2016. For the fluttercalculations, industry-standard linear panel methods have been used together with afinite element model from NASTRAN.Further, an alternative approach for more accurate transonic flutter predictions usingthe full-potential solver Phi has been investigated. To predict flutter using this newmethodology a simplified structural model has been used together with aerodynamicmeshes of the main wing. The purpose of the approach was to see if it was possibleto find a method that was more accurate than panel methods in the transonic regimewhilst still being suitable for use during iterative design processes.The results of this project demonstrated that industry-standard linear panel methodssignificantly over-predict the flutter boundary in the transonic regime. It was alsoseen that the flutter predictions using Phi showed potential, being close to the linearresults for the same configuration as tested in Phi. For improved transonic accuracy inPhi, an improved transonic flow finite element formulation could possibly help .Another challenge with Phi is the requirement of an explicit wake from all liftingsurfaces in the aerodynamic mesh. Therefore, a method for meshing external storeswith blunt trailing edges needs to be developed. One concept suggested in this projectis to model external stores in "2.5D", representing external stores using airfoils withsharp trailing edges. / Ett farligt och inte helt utrett aeroelastiskt fenomen är den transoniska dippen, minskningeni dynamiska trycket vid fladder som inträffar för de flesta flygplan i transoniskaflöden. Svårigheten i att prediktera detta fenomen tvingar flygplanstillverkare attbedriva tidskrävande och kostsam flygprovsverksamhet för att demonstrera att derasflygplan ej uppvisar fladderbeteende i transonik inom det tilltänkta användningsområdet.I detta projekt har fladderberäkningar genomförts i både underljud och transonikför en generisk stridsflygplansmodell i skala 1:4 ämnad för forskning, byggd som ettsamarbete mellan KTH och NASA. Beräkningarna har också jämförts med fladderresultatfrån vindtunnelprov genomförda vid NASA Langley under sommaren 2016. Förfladderberäkningarna har industri-standarden linjära panelmetoder används tillsammansmed en befintlig finit element modell för användning i NASTRAN.Vidare har ett alternativt tillvägagångssätt för att förbättra precisionen i transoniskafladderresultat genom att använda potentiallösaren Phi undersökts. En förenkladstrukturmodell har använts tillsammans med aerodynamiska nät av huvudvingen föratt prediktera fladder. Syftet med denna metodik var att undersöka om det var möjligtatt hitta en metod som i transoniska flöden var mer exakt än panelmetoder men somfortfarande kunde användas i iterativa design processer.Resultaten från detta projekt visade att linjära panelmetoder, som de som används iindustrin, är signifikant icke-konservativa gällande fladdergränsen i transonik. Resultatenfrån Phi visade potential genom att vara nära de linjära resultaten som räknadesfram med hjälp av panelmetoder för samma konfiguration som i Phi. För ökad transonisknoggrannhet i Phi kan möjligen en förbättrad transonisk element-formuleringhjälpa.En annan utmaning med Phi är kravet på en explicit vak från alla bärande ytor idet aerodynamiska nätet. Därför behöver det utvecklas en metodik för nätgenereringav yttre laster med trubbiga bakkanter. Ett koncept som föreslås i denna rapport är attmodellera yttre laster i "2.5D", där alla yttre laster beskrivs genom att använda vingprofilermed skarpa bakkanter.
|
307 |
High-Frame-Rate Oil Film InterferometryWhite, Jonathan Charles 01 May 2011 (has links) (PDF)
High-Frame-Rate Oil Film Interferometry
Jonathan Charles White
This thesis presents the design and implementation of a high-frame-rate oil film interferometry technique (HOFI) used to directly measure skin friction in time dependent flows. Experiments were performed to determine the ability of a high-speed camera to capture oil film interferometry images. HOFI was found to be able to capture these interferometry images at frequencies up to 105 Hz. Steady laminar and turbulent flows were tested. Transient flows tested consisted of a wind tunnel ramping up in velocity and a laminar boundary layer which was intermittently tripped to turbulence by puffing air out of a pressure tap. Flow speeds ranged from 0 to 108 ft/sec and 10 and 50 cSt Dow Corning 200 dimethylpolysiloxane silicone oil was used. The skin friction was determined from the rate of change of the height of the oil film using lubrication theory. The height of the oil film was determined from the high speed camera interferogram images using a MATLAB script which determined fringe spacing by fitting a four-parameter sine wave to the intensity levels in each image. The MATLAB script was able to determine the height of the oil film for thousands of interferogram images in only a few minutes with sub-pixel error in fringe spacing. The skin friction was calculated using the oil film height history allowing for the direct measurement of skin friction in time dependent flows.
|
308 |
Microphone-Based Pressure Diagnostics for Boundary Layer TransitionLillywhite, Spencer Everett 01 July 2013 (has links) (PDF)
An experimental investigation of the use low-cost microphones for unsteady total pressure measurement to detect transition from laminar to turbulent boundary layer flow has been conducted. Two small electret condenser microphones, the Knowles FG-23629 and the FG-23742, were used to measure the pressure fluctuations and considered for possible integration with an autonomous boundary layer measurement system. Procedures to determine the microphones’ maximum sound pressure levels and frequency response using an acoustic source provided by a speaker and a reference microphone. These studies showed that both microphones possess a very flat frequency response and that the max SPL of the FG-23629 is 10 Pa and the max SPL of the FG-23742 is greater than 23 Pa. Several sensor-probe configurations were developed, and the three best were evaluated in wind tunnel tests. Measurements of the total pressure spectrum, time signal, and the root-mean-square were taken in the boundary layer on a sharp-nose flat plate in the Cal Poly 2 foot by 2 foot wind tunnel at dynamic pressures ranging between 135 Pa and 1350 Pa, corresponding to freestream velocities of 15 m/s to 47 m/s. The pressure spectra were collected to assess the impact of the probe on the microphone frequency response. The two configurations with long probes showed peaks in the pressure spectra corresponding to the resonant frequencies of the probe. The root-mean-square of the pressure fluctuations did not vary much between the different probes. The root-mean-square of the pressure fluctuations collected in turbulent boundary layers were found to be 10% of the local freestream dynamic pressure and decreased to 3.5% as the freestream dynamic pressure was increased. The RMS of the pressure fluctuations taken in both laminar boundary layers and in the freestream varied between 0.5% and 2.5% of the local freestream dynamic pressure. The large difference between the RMS of the pressure fluctuations in laminar and turbulent boundary layers taken at low dynamic pressures suggests that this system is indeed capable of distinguishing between laminar and turbulent flow. The drop in the RMS of the pressure fluctuations as dynamic pressure increased is indicative of insufficient maximum sound pressure level of the microphone resulting in clipping of the pressure fluctuation; this is confirmed through inspection of the pressure time signal and spectrum. Thus, a microphone with higher maximum sound pressure level is needed for turbulence detection at higher dynamic pressures. Alternatively, it may be possible to attenuate the total pressure fluctuation signal.
|
309 |
Skin Friction and Cross-flow Separation on an Ellipsoidal Body During Constant Yaw Turns and a Pitch-up Maneuver with Roll OscillationDeMoss, Joshua Andrew 29 October 2010 (has links)
The skin friction and cross-flow separation location on a non-body-of-revolution (non-BOR) ellipsoidal model performing constant-yaw turns and a pitch-up maneuver, each with roll oscillation were studied for the first time. The detailed, low uncertainty, flow topology data provide an extensive experimental database on the flow over non-BOR hull shapes that does not exist anywhere else in the world and serves as a crucial tool for computational validation. The ellipsoidal model was mounted on a roll oscillation machine in the Virginia Tech Stability Wind Tunnel slotted wall test section. Hot-film sensors with constant temperature anemometers provided skin friction magnitudes on the body's surface for thirty-three steady flow model orientations and three unsteady maneuvers at a constant Reynolds number of 2.5 million. Cross-flow separation locations on the model were determined from span-wise minima in the skin friction magnitude for both the steady orientations and unsteady maneuvers. Steady hot-film data were obtained over roll angles between ±25° in 5° increments with the model mounted at 10° and 15° yaw and at 7° pitch with respect to the flow. The roll oscillation machine was used to create a near sinusoidal unsteady roll motion between ±26° at a rate of 3 Hz, which corresponded to a non-dimensional roll period of 5.4. Unsteady data were obtained with the ellipsoidal model mounted at 10° and 15° yaw and at 7° pitch during the rolling maneuver. Cross-flow separation was found to dominate the leeside flow of the model for all orientations. For the yaw cases, the separation location moved progressively more windward and inboard as the flow traveled downstream. Increasing the model roll or yaw angle increased the adverse pressure gradient on the leeward side, creating stronger cross-flow separation that began further upstream and migrated further windward on the model surface. For the pitch flow case, the cross-flow separation remained straight as the flow moved axially downstream. The strongest pitch cross-flow separation was observed at the most negative roll angle and dissipated, moving further downstream and inboard as the model's roll angle was increased. The unsteady flow maneuvers exhibited the same flow topology observed in the quasi-steady conditions. However, the unsteady skin friction and separation locations lagged their quasi-steady counterparts at equivalent roll angles during the oscillation cycle. A first order time lag model and sinusoidal fit to the separation location data quantified the time lags that were observed. / Ph. D.
|
310 |
Numerical investigation of rotating instabilities in axial compressorsChen, Xiangyi 29 June 2023 (has links)
In axial compressors with a relatively large blade tip clearance, an unsteady phenomenon denoted as rotating instability (RI) can be detected when the compressor is throttled to the operating points near the stability limit. In the frequency domain, RIs are shown as a hump lower than the blade passing frequency. This indicates an increase in noise level and might cause blade vibration and other undesirable structural issues. In this thesis, a comprehensive study on RIs is performed based on an axial compressor rotor row of the Low Speed Research Compressor at Technische Universität Dresden. Three blade tip clearances are investigated, and a groove casing treatment is mounted over the shroud for flow control. Methods of numerical modeling are evaluated, and zonal large eddy simulation is selected as the numerical model. By analyzing the flow properties and applying the dynamic mode decomposition, the coherent flow structure corresponding to the dominant frequency of RIs is extracted and visualized as the waves located in the blade tip region. The criteria for the appearance of RIs in the investigated research object are concluded.
|
Page generated in 0.0463 seconds