Spelling suggestions: "subject:"unsteady aerodynamic""
41 |
Numerical Investigation of Unsteady Crosswind Aerodynamics for Ground VehiclesFavre, Tristan January 2009 (has links)
Ground vehicles are subjected to crosswind from various origins such as weather, topography of the ambient environment (land, forest, tunnels, high bushes...) or surrounding traffic. The trend of lowering the weight of vehicles imposes a stronger need for understanding the coupling between crosswind stability, the vehicle external shape and the dynamic properties. Means for reducing fuel consumption of ground vehicles can also conflict with the handling and dynamic characteristics of the vehicle. Streamlined design of vehicle shapes to lower the drag can be a good example of this dilemma. If care is not taken, the streamlined shape can lead to an increase in yaw moment under crosswind conditions which results in a poor handling. The development of numerical methods provides efficient tools to investigate these complex phenomena that are difficult to reproduce experimentally. Time accurate and scale resolving methods, like Detached-Eddy Simulations (DES), are particularly of interest, since they allow a better description of unsteady flows than standard Reynolds Average Navier-Stokes (RANS) models. Moreover, due to the constant increase in computational resources, this type of simulations complies more and more with industrial interests and design cycles. In this thesis, the possibilities offered by DES to simulate unsteady crosswind aerodynamics of simple vehicle models in an industrial framework are explored. A large part of the work is devoted to the grid design, which is especially crucial for truthful results from DES. Additional concerns in simulations of unsteady crosswind aerodynamics are highlighted, especially for the resolution of the wind-gust boundary layer profiles. Finally, the transient behaviour of the aerodynamic loads and the flow structures are analyzed for several types of vehicles. The results simulated with DES are promising and the overall agreement with the experimental data available is good, which illustrates a certain reliability in the simulations. In addition, the simulations show that the force coefficients exhibit highly transient behaviour under gusty conditions. / ECO2 Crosswind Stability and Unsteady Aerodynamics for Ground Vehicles
|
42 |
Simulations of Flow Over Wind TurbinesDigraskar, Dnyanesh A 01 January 2010 (has links) (PDF)
One of the most abundant sources of renewable energy is wind. Today, a considerable amount of resources are being utilized for research on harnessing the wind energy efficiently. Out of all the factors responsible for efficient energy production, the aerodynamics of flow around the wind turbine blades play an important role. This work aims to undertake aerodynamic analysis of a Horizontal Axis Wind Turbine. A steady state, incompressible flow solver for multiple reference frames, MRFSimple- Foam is modified and used for performing simulations of flow over National Renewable Energy Laboratory Phase VI wind turbine rotor. The code is first tested on a locally modeled wind turbine blade and is then validated by using the actual NREL rotor. The flow behavior is studied and a comparison of results from the simulations and the experimental wind tunnel data is presented. The ability of Computational Fluid Dynamics (CFD) techniques in simulating wind flow over entire wind turbine assembly is also displayed by carrying out moving mesh simulations of a full wind turbine.
|
43 |
Transonic Flutter for aGeneric Fighter Configuration / Transoniskt fladder för en generiskflygplanskonfigurationBååthe, Axel January 2018 (has links)
A hazardous and not fully understood aeroelastic phenomenon is the transonic dip,the decrease in flutter dynamic pressure that occurs for most aircraft configurationsin transonic flows. The difficulty of predicting this phenomenon forces aircraft manufacturersto run long and costly flight test campaigns to demonstrate flutter-free behaviourof their aircraft at transonic Mach numbers.In this project, subsonic and transonic flutter calculations for the KTH-NASA genericfighter research model have been performed and compared to existing experimentalflutter data from wind tunnel tests performed at NASA Langley in 2016. For the fluttercalculations, industry-standard linear panel methods have been used together with afinite element model from NASTRAN.Further, an alternative approach for more accurate transonic flutter predictions usingthe full-potential solver Phi has been investigated. To predict flutter using this newmethodology a simplified structural model has been used together with aerodynamicmeshes of the main wing. The purpose of the approach was to see if it was possibleto find a method that was more accurate than panel methods in the transonic regimewhilst still being suitable for use during iterative design processes.The results of this project demonstrated that industry-standard linear panel methodssignificantly over-predict the flutter boundary in the transonic regime. It was alsoseen that the flutter predictions using Phi showed potential, being close to the linearresults for the same configuration as tested in Phi. For improved transonic accuracy inPhi, an improved transonic flow finite element formulation could possibly help .Another challenge with Phi is the requirement of an explicit wake from all liftingsurfaces in the aerodynamic mesh. Therefore, a method for meshing external storeswith blunt trailing edges needs to be developed. One concept suggested in this projectis to model external stores in "2.5D", representing external stores using airfoils withsharp trailing edges. / Ett farligt och inte helt utrett aeroelastiskt fenomen är den transoniska dippen, minskningeni dynamiska trycket vid fladder som inträffar för de flesta flygplan i transoniskaflöden. Svårigheten i att prediktera detta fenomen tvingar flygplanstillverkare attbedriva tidskrävande och kostsam flygprovsverksamhet för att demonstrera att derasflygplan ej uppvisar fladderbeteende i transonik inom det tilltänkta användningsområdet.I detta projekt har fladderberäkningar genomförts i både underljud och transonikför en generisk stridsflygplansmodell i skala 1:4 ämnad för forskning, byggd som ettsamarbete mellan KTH och NASA. Beräkningarna har också jämförts med fladderresultatfrån vindtunnelprov genomförda vid NASA Langley under sommaren 2016. Förfladderberäkningarna har industri-standarden linjära panelmetoder används tillsammansmed en befintlig finit element modell för användning i NASTRAN.Vidare har ett alternativt tillvägagångssätt för att förbättra precisionen i transoniskafladderresultat genom att använda potentiallösaren Phi undersökts. En förenkladstrukturmodell har använts tillsammans med aerodynamiska nät av huvudvingen föratt prediktera fladder. Syftet med denna metodik var att undersöka om det var möjligtatt hitta en metod som i transoniska flöden var mer exakt än panelmetoder men somfortfarande kunde användas i iterativa design processer.Resultaten från detta projekt visade att linjära panelmetoder, som de som används iindustrin, är signifikant icke-konservativa gällande fladdergränsen i transonik. Resultatenfrån Phi visade potential genom att vara nära de linjära resultaten som räknadesfram med hjälp av panelmetoder för samma konfiguration som i Phi. För ökad transonisknoggrannhet i Phi kan möjligen en förbättrad transonisk element-formuleringhjälpa.En annan utmaning med Phi är kravet på en explicit vak från alla bärande ytor idet aerodynamiska nätet. Därför behöver det utvecklas en metodik för nätgenereringav yttre laster med trubbiga bakkanter. Ett koncept som föreslås i denna rapport är attmodellera yttre laster i "2.5D", där alla yttre laster beskrivs genom att använda vingprofilermed skarpa bakkanter.
|
44 |
A Discrete Vortex Method Application to Low Reynolds Number Aerodynamic FlowsHammer, Patrick Richard 22 August 2011 (has links)
No description available.
|
45 |
Unsteady Aerodynamic Interaction in a Closely-Coupled Turbine Consistent with Contra-RotationOoten, Michael Kenneth 26 August 2014 (has links)
No description available.
|
46 |
3-D Unsteady Simulation of a Modern High Pressure Turbine Stage: Analysis of Heat Transfer and FlowShyam, Vikram January 2009 (has links)
No description available.
|
47 |
Modeling of Nonlinear Unsteady Aerodynamics, Dynamics and Fluid Structure InteractionsYan, Zhimiao 29 January 2015 (has links)
We model different nonlinear systems, analyze their nonlinear aspects and discuss their applications.
First, we present a semi-analytical, geometrically-exact, unsteady potential flow model is developed for airfoils undergoing large amplitude maneuvers. Towards this objective, the classical unsteady theory of Theodorsen is revisited by relaxing some of the major assumptions such as (1) flat wake, (2) small angle of attack, (3) small disturbances to the mean flow components, and (4) time-invariant free-stream. The kinematics of the wake vortices is simulated numerically while the wake and bound circulation distribution and, consequently, the associated pressure distribution are determined analytically. The steady and unsteady behaviors of the developed model are validated against experimental and computational results. The model is then used to determine the lift frequency response at different mean angles of attack.
Second, we investigate the nonlinear characteristics of an autoparametric vibration system. This system consists of a base structure and a cantilever beam with a tip mass. The dynamic equations for the system are derived using the extended Hamilton's principle. The method of multiple scales is then used to analytically determine the stability and bifurcation of the system. The effects of the amplitude and frequency of the external force, the damping coefficient and frequency of the attached cantilever beam and the tip mass on the nonlinear responses of the system are determined. As an application, the concept of energy harvesting based on the autoparametric vibration system consisting of a base structure subjected to the external force and a cantilever beam with a tip mass is evaluated. Piezoelectric sheets are attached to the cantilever beam to convert the vibrations of the base structure into electrical energy. The coupled nonlinear distributed-parameter model is developed and analyzed. The effects of the electrical load resistance on the global frequency and damping ratio of the cantilever beam are analyzed by linearizion of the governing equations and perturbation method. Nonlinear analysis is performed to investigate the impacts of external force and load resistance on the response of the harvester.
Finally, the concept of harvesting energy from ambient and galloping vibrations of a bluff body is investigated. A piezoelectric transducer is attached to the transverse degree of freedom of the body in order to convert the vibration energy to electrical power. A coupled nonlinear distributed-parameter model is developed that takes into consideration the galloping force and moment nonlinearities and the base excitation effects. The aerodynamic loads are modeled using the quasi-steady approximation. Linear analysis is performed to determine the effects of the electrical load resistance and wind speed on the global damping and frequency of the harvester as well as on the onset of instability. Then, nonlinear analysis is performed to investigate the impact of the base acceleration, wind speed, and electrical load resistance on the performance of the harvester and the associated nonlinear phenomena. Short- and open-circuit configurations for different wind speeds and base accelerations are assessed. / Ph. D.
|
48 |
Aerodynamic optimisation of a small-scale wind turbine blade for low windspeed conditionsCencelli, Nicolette Arnalda, Von Bakstrom, T.W., Denton, T.S.A. 12 1900 (has links)
Thesis (MScEng (Department of Mechanical and Mechatronic Engineering))--Stellenbosch University, 2006. / ENGLISH ABSTRACT: Wind conditions in South Africa determine the need for a small-scale wind turbine to produce useable power at windspeeds below 7m/s. In this project, a range of windspeeds, within which optimal performance o the wind turbine is expected, was selected. The optimal performance was assessed in terms of the Coefficient of Power(Cp), which rates the turbines blade's ability to extract energy form the avalible wind stream. The optimisation methods employed allowed a means of tackling the multi-variable problem such that the aerodynamic characteristics of the blade were ideal throughout the wind speed range. The design problem was broken down into a two-dimensional optimisaion of the airfoils used at the radial stations, and a three-dimensional optimisation of the geometric features of the wind rotor. by means of blending various standard airfoil profiles, a new profile was created at each radial station. XFOIL was used for the two-dimensional analysis of these airfoils. Three-dimensional optimisn involved representation of the rotor as a simplified model and use of the Blade Element Momentum(BEM) method for analysis. an existimg turbine blade, on which the design specifications were modelled, was further used for comparative purposes throughout the project. The resulting blade design offers substantial improvements on the reference design. The application of optimisation methods has successfully aided the creation of a wind turbine blade with consistent peak performance over a range of design prints. / Sponsored by the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University
|
49 |
Dynamic Response of a Hingeless Helicopter Rotor Blade at Hovering and Forward FlightsSarker, Pratik 20 December 2018 (has links)
The helicopter possesses the unrivaled capacity for vertical takeoff and landing which has made the helicopter suitable for numerous tasks such as carrying passengers and equipment, providing air medical services, firefighting, and other military and civil tasks. The nature of the aerodynamic environment surrounding the helicopter gives rise to a significant amount of vibration to its whole body. Among different sources of vibrations, the main rotor blade is the major contributor. The dynamic characteristics of the hingeless rotor consisting of elastic blades are of particular interest because of the strongly coupled equations of motion. The elastic rotor blades are subjected to coupled flapping, lead-lag, and torsional (triply coupled) deflections. Once these deflections exceed the maximum allowable level, the structural integrity of the rotor blade is affected leading to the ultimate failure. The maximum deflection that a blade can undergo for a specific operating condition needs to be estimated. Therefore, in this study, the triply coupled free and forced response of the Bo 105 hingeless, composite helicopter rotor blade is investigated at hovering and forward flights. At first, a model of the composite cross-section of the rotor blade is proposed for which a semi-analytical procedure is developed to estimate the sectional properties. These properties are used in the mathematical model of the free vibration of the rotor blade having the proposed cross-section to solve for the natural frequencies and the mode shapes. The aerodynamic loadings from the strip theory are used to estimate the time-varying forced response of the rotor blade for hovering and forward flights. The large flapping and inflow angles are introduced in the mathematical model of the forward flight and the corresponding nonlinear mathematical model requires a numerical solution technique. Therefore, a generalization of the method of lines is performed to develop a robust numerical solution in terms of time-varying deflections and velocities. The effect of the unsteady aerodynamics at the forward flight is included in the mathematical model to estimate the corresponding dynamic response. Both the analytical and the numerical models are validated by finite element results and the convergence study for the free vibration is performed.
|
50 |
Semi-analytical prediction of wake-interaction noise in counter-rotating open rotors / Etude Analytique du bruit des hélices contra-rotativesCarazo Méndez, Arnulfo 14 June 2012 (has links)
Les constructeurs aéronautiques envisagent les systèmes de propulsion à hélices contra rotatives comme une alternative aux turboréacteurs, afin de réduire la consommation de carburant et les émissions des gaz à effet de serre. En raison de l’absence de carénage, la réduction du bruit engendrée par de tels systèmes représente un enjeu majeur pour les industriels. En particulier, le bruit de raies dû à l’impact des sillages de l’hélice amont sur l’hélice aval constitue une part significative de l’émission acoustique. Le travail présenté dans cette thèse a abouti à une méthode semi-analytique de prédiction de ce bruit d’interaction, intégrant de façon relativement réaliste les effets tridimensionnels des sillages de l’hélice amont et de la géométrie des pales de l’hélice aval. L’espace balayé par une pale est décomposé en tranches annulaires, déroulées pour décrire localement l’interaction en coordonnées cartésiennes. Le segment de pale obtenu est approché par un trapèze plat de forme et d’orientation quelconques. Une double stratégie est proposée pour la description du sillage. Premièrement, il peut être décrit par un modèle analytique tenant compte du vrillage et de l’expansion avec la distance au bord de fuite. Deuxièmement, il peut être post-traité à partir des calculs numériques. Ensuite, dans chaque tranche le déficit de vitesse ressenti par le segment de pale fait l’objet d’une décomposition de Fourier à deux nombres d’onde. Le calcul de la réponse aérodynamique instationnaire du segment est fait dans le domaine fréquentiel. Il étend des solutions analytiques existantes valables pour un segment rectangulaire, et prend en compte la compressibilité du fluide et la non-compacité des pales. On restitue ainsi les effets de la flèche, du vrillage et de la variation de la corde en envergure. Les fluctuations de portance induites sur les différents segments, obtenues par le calcul, sont utilisées pour construire une répartition de sources acoustiques équivalentes sur la surface réelle des pales, au sens de l’analogie acoustique. Le bruit en champ lointain est alors calculé en utilisant le formalisme de Ffowcs Williams & Hawkings, adapté au cas d’un dipôle tournant dans un écoulement uniforme. La méthodologie proposée a été implémentée dans l’outil ORION et évaluée avec des résultats numériques et des mesures en soufflerie. / Counter-rotating open rotors are seen as a possible alternative to turbofan engines for future subsonic aircraft propulsion, essentially for their higher fuel-efficiency. This technology leads to fuel saving sand to reduced green-house gas emissions. However, these benefits are balanced by some inherent draw-backs, as the increased noise radiation. Particularly, the tonal noise produced by the impingement of the wakes issuing from the front rotor onto the rear-rotor blades is recognized as a major contributor to the emitted noise. The research presented in this thesis led to a semi-analytical methodology to predict the rotor-rotor interaction tonal noise, including three-dimensional features of both rear-rotor blades and front-rotor wakes. The space is cut into annular regions, subsequently unwrapped for formulating the problem in equivalent Cartesian coordinates. Also, the obtained blade segments are assimilated as a set of flat trapezoids with arbitrary orientation, accounting for blade sweep and chord variations in the span wise direction. A double strategy is proposed for the description of front-rotor wakes. First, an analytical model is proposed in which wake direction and diffusion are deduced from the blade stagger angle and axial distance between the rotors. Secondly, a strategy for post-processing numerical wakes is presented. In both cases, the oncoming excitation is expanded in a series of sinusoidal gusts with two aerodynamic wavenumber components. Using this information the unsteady loading on the rear-rotor blades is obtained, in the frequency domain, from an extension of Amiet’s theory for gust-air foil interaction to account for air foil sweep and chord variations, flow compressibility and source non-compactness. The obtained noise source is back-projected on the blade mean-camber surface. An extended far-field formulation is then used to predict the noise. This theory is derived in detail from Ffowcs Williams &Hawkings’ formalism adapted for acoustic dipoles rotating in a uniformly moving atmosphere. The pro-posed methodology has been implemented in the tool ORION and assessed by comparing its results with numerical simulations and wind-tunnel measurements.
|
Page generated in 0.3338 seconds