591 |
Lichen thermal sensitivities, moisture interception and elemental accumulation in an arid South African ecosystemMaphangwa, Khumbudzo Walter January 2010 (has links)
<p>Elevated temperatures accompanying climate warming are expected to have adverse effects on sensitive lichen species. This premise was examined by measuring the sensitivity of different lichen species to elevated temperatures in the laboratory and in the field. Laboratory studies involved the exposure of nine hydrated lichen species (Xanthoparmelia austro-africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina hottentotta, Teloschistes capensis, Ramalina sp., Flavopuntelia caperata, Lasallia papulosa, Parmotrema austrosinensis) collected from sites of different aridity and mean annual temperature for 2 hourly intervals to temperatures ranging from 24º / C to 48º / C in a forced daft oven and measuring their respiration rates and maximum quantum yield of PSII. Field studies involved simultaneous hourly measurements of ground surface air temperatures and Lichen effective quantum yield of PSII of hydrated lichen species populations under ambient and artificially modified environmental conditions.</p>
|
592 |
Environmental Chemistry of Commercial Fluorinated Surfactants: Transport, Fate, and Source of Perfluoroalkyl Acid Contamination in the EnvironmentLee, Holly 19 June 2014 (has links)
Perfluoroalkyl carboxylates (PFCAs) and perfluoroalkane sulfonates (PFSAs)are anthropogenic fluorinated surfactants that have been detected in almost every environmental compartment studied, yet their production and applications are far outweighed by those of other higher molecular weight fluorinated surfactants used in commerce. These fluorinated surfactants are widely incorporated in commercial products, yet their post-application fate has not been extensively studied. This thesis examines various biological and environmental processes involved in the fate of these surfactants upon consumer disposal. Specific focus was directed towards the environmental chemistry of polyfluoroalkyl phosphate esters (PAPs), perfluoroalkyl phosphonates (PFPAs), and perfluoroalkyl phosphinates (PFPiAs), and their potential roles as sources of perfluoroalkyl acids (PFAAs) in the environment. PAPs are established biological precursors of PFCAs, while PFPAs and PFPiAs are newly discovered PFAAs in the environment.
Incubation with wastewater treatment plant (WWTP) microbes demonstrated the ability of PAPs to yield both fluorotelomer alcohols (FTOHs), which are established precursors of PFCAs, and the corresponding PFCAs themselves. WWTP biosolids-applied soil-plant microcosms revealed that PAPs can significantly accumulate in plants along with their degradation metabolites. This has implications for potential wildlife and human exposure through the consumption of plants grown and/or livestock raised on farmlands that have been amended with contaminated biosolids.
A number of compound-and environmental-specific factors were observed to significantly influence the partitioning of PFPAs and PFPiAs between aqueous media and soil, as well as, aquatic biota during sorption and bioaccumulation experiments respectively. In both processes, PFPAs were primarily observed in the aqueous phase, while PFPiAs predominated in soil and biological tissues, consistent with the few environmental observations of these chemicals made to date.
Detection of the PAP diesters (diPAPs), PFPiAs, and fluorotelomer sulfonates (FTSAs),all of which are used commercially, in human sera is evidence of human exposure to commercial fluorinated products, but the pathways by which this exposure occurs remain widely debated. Overall, this work presents novel findings on the environmental fate of commercial fluorinated surfactants and each of the process studied shows a clear link between the use of commercial products and the fluorochemical burden currently observed in the environment.
|
593 |
Environmental Chemistry of Commercial Fluorinated Surfactants: Transport, Fate, and Source of Perfluoroalkyl Acid Contamination in the EnvironmentLee, Holly 19 June 2014 (has links)
Perfluoroalkyl carboxylates (PFCAs) and perfluoroalkane sulfonates (PFSAs)are anthropogenic fluorinated surfactants that have been detected in almost every environmental compartment studied, yet their production and applications are far outweighed by those of other higher molecular weight fluorinated surfactants used in commerce. These fluorinated surfactants are widely incorporated in commercial products, yet their post-application fate has not been extensively studied. This thesis examines various biological and environmental processes involved in the fate of these surfactants upon consumer disposal. Specific focus was directed towards the environmental chemistry of polyfluoroalkyl phosphate esters (PAPs), perfluoroalkyl phosphonates (PFPAs), and perfluoroalkyl phosphinates (PFPiAs), and their potential roles as sources of perfluoroalkyl acids (PFAAs) in the environment. PAPs are established biological precursors of PFCAs, while PFPAs and PFPiAs are newly discovered PFAAs in the environment.
Incubation with wastewater treatment plant (WWTP) microbes demonstrated the ability of PAPs to yield both fluorotelomer alcohols (FTOHs), which are established precursors of PFCAs, and the corresponding PFCAs themselves. WWTP biosolids-applied soil-plant microcosms revealed that PAPs can significantly accumulate in plants along with their degradation metabolites. This has implications for potential wildlife and human exposure through the consumption of plants grown and/or livestock raised on farmlands that have been amended with contaminated biosolids.
A number of compound-and environmental-specific factors were observed to significantly influence the partitioning of PFPAs and PFPiAs between aqueous media and soil, as well as, aquatic biota during sorption and bioaccumulation experiments respectively. In both processes, PFPAs were primarily observed in the aqueous phase, while PFPiAs predominated in soil and biological tissues, consistent with the few environmental observations of these chemicals made to date.
Detection of the PAP diesters (diPAPs), PFPiAs, and fluorotelomer sulfonates (FTSAs),all of which are used commercially, in human sera is evidence of human exposure to commercial fluorinated products, but the pathways by which this exposure occurs remain widely debated. Overall, this work presents novel findings on the environmental fate of commercial fluorinated surfactants and each of the process studied shows a clear link between the use of commercial products and the fluorochemical burden currently observed in the environment.
|
594 |
Linker-based Lecithin Oral Drug Delivery SystemsChu, Jacquelene 04 December 2012 (has links)
In this study, pharmaceutical-grade and food-grade linker-based lecithin self-emulsifying delivery systems (SEDS) were developed with a combination of lipophilic and hydrophilic linkers. These additives at suggested concentrations are safe for pharmaceutical and food applications. The ratio of surfactant lecithin and linkers in these systems was optimized to develop surfactant in oil preconcentrates. The preconcentrates containing different surfactant concentrations and oil were diluted with fed state simulated intestinal fluid to produce pseudo-ternary phase diagrams and to identify the formulations that produced self-emulsifying or self-microemulsifying delivery systems. Optimal SEDS preconcentrates were evaluated using a dialyzer model to simulate intestinal uptake. An uptake of 39.6 mg/cm2 for the pharmaceutical-grade SEDS was obtained within 72 minutes, which promises substantial improvement in the bioavailability of hydrophobic actives. The optimal uptake of 12.2 mg/cm2 for food-grade SEDS suggests enhancement in the bioavailability of omega-3 fatty acids.
|
595 |
Investigation Of Turkey' / s Carbon Dioxide Problem By Numerical ModelingCan, Ali 01 February 2006 (has links) (PDF)
CO2 emission is very important, because it is responsible for about 60% of the " / Greenhouse Effect" / . The major objectives of this study were to prepare a CO2 emission inventory of Turkey based on districts and provinces by using the fuel consumption data with respect to its sources, to find the CO2 uptake rate of forests in Turkey based on provinces and districts, and to estimate the ground level concentration of CO2 across Turkey using U.S. EPA' / s ISCLT3 model for the preparation of ground level concentration maps. The basic sources of the CO2 emission were taken as households, manufacturing industries, thermal power plants and road vehicles. The sinks of the CO2 were forests. The CO2 uptake by forests was calculated using the annual increment of forest biomass.
The results of the CO2 emission inventory conducted in this study between the years 1990 and 2003 showed that the CO2 emission in 1990 was 142.45 million tones/year and the highest emission was calculated in 2000 with a value of 207.97 million tones/year.
The regional distribution of CO2 emission showed that the Marmara Region emits the highest regional CO2 emission throughout the years with an average value of 54.76 million tones/year. It was also calculated that Marmara and Aegean Regions are responsible for half of the CO2 emission of Turkey.
The results of the CO2 uptake calculations showed that the CO2 uptake of forests in the coastal zone was higher that that in the inland zone. The CO2 uptake in the Central Anatolia, Eastern Anatolia and South-Eastern Anatolia Regions were 2.6, 1.9 and 1.1 million tones/year, respectively. The maximum CO2 uptake is in the Black Sea Region with a value of 16.4 million tones/year.
The highest ground level CO2 concentartions without any sink effect were always obtained in the Marmara Region. However, the forest areas in this region decrease the concentrations considerably.
The dispersion model performance is determined highly without the results of the year 2002.
|
596 |
Der Einfluss von Repin1 auf die Fettzellgröße und den Glukosetransport in AdipozytenIlles, Monica 10 January 2012 (has links) (PDF)
An der Spitze der Morbiditäts - und Mortalitätsstatistik steht weltweit das
Metabolische Syndrom, bestehend aus androider Adipositas, pathologischer
Glukosetoleranz, Dyslipidämie und arterieller Hypertonie, verbunden mit einer
erhöhten Inzidenz atherosklerotischer Gefäßerkrankungen. Der Replikationsinitiator
1 (Repin1) wurde kürzlich als mögliches Kandidatengen für Adipositas sowie damit
verbundene metabolische Funktionsstörungen in kongenen sowie subkongenen
Rattenstämmen identifiziert. Ziel der Arbeit war es, den Einfluss von Repin1 auf den
Fettzellstoffwechsel zu untersuchen. Hierfür wurde die Expression von Repin1 in 3T3–
L1 Präadipozyten und differenzierten 3T3-L1 Adipozyten mittels siRNA Technologie
stark vermindert, um so auf mögliche Funktionen des Proteins schließen zu können.
Nachfolgend wurden Veränderungen des Zellstoffwechsels mittels Glukosetransport,
Palmitataufnahme sowie Triglyceridgehalt der Adipozyten untersucht.
Repin1 wird in der 3T3-L1 Zelllinie exprimiert und zeigt eine steigende Expression
während der Adipogenese. Der Knockdown von Repin1 resultierte in kleineren
Fettzellen mit geringerer basaler, jedoch verstärkter insulinstimulierter
Glukoseaufnahme. Auch der Fettstoffwechsel zeigte sich alteriert: Neben einer
reduzierten Palmitataufnahme war die Expression verschiedener Schlüsselgene der
Fetttropfenfusion, des Glukose-sowie des Fetttransportes verändert.
Fazit: Repin1 reguliert die Expression von Genen, die eine Rolle bei der Festlegung der
Fettzellgröße und des basalen und Insulin-stimulierten Glukosetransports in
Adipozyten spielen.
|
597 |
Aerobic fitness, physical function and falls among older people : a prospective studyBell, Rebecca A. January 2008 (has links)
Falls in people aged over 65 years account for the largest proportion of all injury-related deaths and hospitalisations within Australia. Falls contributed to 1,000 deaths and 50,000 hospitalisations in older people during 1998 (Commonwealth Department of Health and Aged Care 2001). It has been predicted that by 2016, 16% of the Australian population will be aged over 65 years (Australian Bureau of Statistics 1999) placing considerable pressure on the health care system. Furthermore, prospective studies have shown that 30-50% of people aged 65 years and over, will experience a fall (Tinetti et al. 1988b; Campbell et al. 1989; Lord et al. 1994b; Hill 1999; Brauer et al. 2000; Stalenhoef et al. 2002) and this figure increases exponentially with age (Lord et al. 1994b). Many physiological falls risk factors have been established including reduced leg strength, poor balance, impaired vision, slowed reaction time and proprioception deficits. However, little research has been conducted to determine whether performance on aerobic fitness tasks is also a physiological falls risk factor. Aerobic fitness has previously been related to an individual's ability to perform activities of daily living, which in turn has been linked to falls. It was therefore proposed that aerobic fitness might also be a risk factor for falls among community dwelling older people. This research aimed to provide clinical evidence to inform public health practice. This thesis comprised of four objectives: the first to find suitable measures of aerobic fitness for older people; the second investigated relationships between existing clinical tests and future falls; the third explored relationships between aerobic fitness tests and future falls; the final objective was to examine the independent relationships between falls and clinical and physiological characteristics. The participants were recruited through a random sample from the local electoral roll, with an average age of 73 ±6 years. Of the 87 participants who completed the prospective component of the study, 37% were male and 63% were female. Sixty-three participants (65%) reported no previous falls, 19 (20%) reported a single fall, and 16 (15%) reported two or more falls in the previous 12 months. The first objective required participants recruited from the community to take part in submaximal and maximal fitness tests in order to find suitable measures of aerobic fitness. A further objective was to determine whether older people were able to fulfil the 'standard' criteria for completion of a maximum oxygen consumption test. The measures used in this research included: maximum oxygen consumption, peak oxygen consumption, ventilatory threshold, oxygen uptake kinetics, oxygen deficit, efficiencies, oxygen consumption at zero, 30 and 50 watts, predicted max and Six-Minute Walk Test distance. Only weak relationships were observed between submaximal aerobic measures and peak oxygen consumption. Furthermore, only 54% of participants were able to fulfil the criteria to complete a test of maximum oxygen consumption, indicating it was not a suitable measure for use among a sample of community dwelling older people. Therefore submaximal aerobic variables were used in the following chapters. The second objective investigated the relationship between clinical measures and falls among older people and was carried out to enable comparisons between the population in this study and those described in the literature. This research found that the Timed Up and Go (TUG) test was the most sensitive of all clinical tests (including the Berg Balance Scale, Function Reach, Performance Oriented Mobility Assessment and Physiological Profile Assessment) for the assessment of future falls. The TUG requires participants to stand up, walk 3m, turn, walk back, and sit down. Time taken to complete the test is the recorded value. For this study, a cut-off value of 7-seconds was established, above which individuals were at increased risk of falls. Previous research suggested cut-off times of over 10s were appropriate for older people. However, this is the first study to assess falls prospectively and definitively find that the TUG can discriminate between future fallers and non-fallers. This research also investigated the differences in falls risk factors for functionally different subsamples, as defined by their ability to undertake and complete the cycle test. The participants who could complete the test had significantly better balance ability and strength than those unable to undertake or complete the cycle test. However, this inability to undertake or complete the cycle test was not itself a predictor of future falls. These two groups also differed in the relationships between clinical test results and falls risk. Participants in the no-cycle group had very similar results to that of the entire cohort. Even after adjustment for age, the TUG, foot and hand reaction times and knee flexion strength were all performed better by non-fallers than fallers. However, none of these differed between fallers and non-fallers for participants in the cycle group. This group had better balance ability and strength than the no-cycle group. These results indicated that the cycle group differed from the no-cycle group and the entire sample, further indicating that factors other than the physiological variables measured in this research influence falls risk in strong participants with good balance ability. Similar results were reported when aerobic tests and falls were investigated in the third objective. In the whole sample, the fallers walked significantly less distance than non-fallers for the 6-MWT. Similar results were found for participants in the no-cycle group but not the cycle group. All participants were able to complete the Six-Minute Walk Test (6-MWT) although only 74% were able to undertake and complete the cycle test. The fourth objective was to consider all measures from the previous chapters as potential predictors of falls. The variables most predictive of future falls were the TUG and having experienced one or more falls in the previous 12 months. As a result they could be used as screening tools for the identification of high-risk fallers who require referral for further assessment. This could be completed by a General Practitioner or Practice Nurse, which would ensure that screening is being undertaken in the wider population. If the patient is at high risk they should be referred for falls risk factor assessment to determine an optimal tailored intervention to reduce future falls. Low risk patients should be referred for preventive evidence-based activities. These steps can potentially improve quality of life for individuals, and if effective in preventing future falls, will result in reduced costs to the individual and the Australian public. The results of this work demonstrate that the best screening tests are simple tasks like the TUG and asking an individual if they have experienced a fall in the last 12 months. This research also found that strong, mobile older people who could undertake and complete a submaximal cycle ergometer test, still experienced falls in the following 12 months, although the causes of this are currently unknown. This research showed that physiological falls risk factors are less relevant as these highly functional older people do not have physiological deficits. However, this research found that the 6-MWT showed promise as a predictor of falls in a group who could not complete a submaximal cycle ergometer test, who had lower strength, balance and functional fitness scores than a group who could complete this cycle test. The results showed that physiological falls risk factors are still very important for older people with lower physical abilities, and this is where aerobic fitness may still be related to falls. While the association between aerobic fitness and falls remains unclear, these are novel and provocative findings highlighting the need for future falls risk investigations to consider aerobic fitness as a contributing factor.
|
598 |
Biological phosphorus removal by microalgae in waste stabilisation ponds : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Environmental Engineering at Massey University, Palmerston North, New ZealandPowell, Nicola January 2009 (has links)
Waste stabilisation ponds (WSP) are an important wastewater treatment technology used by thousands of communities around the world. Unfortunately, phosphorus removal in WSP is generally low and inconsistent. The aim of this work was to investigate biological phosphorus removal by microalgae in WSP. Luxury uptake of phosphorus, which is the accumulation of polyphosphate, is known to occur in microalgae in natural systems such as lakes; however, this mechanism has not previously been studied under WSP conditions. Three methods were used in the laboratory to investigate luxury uptake and it was shown for the first time that luxury uptake of phosphorus can occur in microalgae under typical WSP conditions. Acid-insoluble polyphosphate (AISP) is a form of phosphorus storage and acid soluble polyphosphate (ASP) is used for synthesis of cellular constituents. However, the findings of this thesis indicate that ASP may also act as a form of short term storage. The environmental factors influencing luxury uptake were investigated using laboratory experiments conducted under controlled conditions. The key environmental factors were the phosphate concentration in the wastewater, light intensity and temperature. A higher phosphate concentration increased the amount of ASP accumulation and also resulted in AISP being stored within the cells instead of being consumed for growth. Higher light intensity increased ASP accumulation, but as a consequence of elevated growth, the ASP was rapidly consumed. Temperature influenced the rate of AISP accumulation and little if any was accumulated at low temperatures. The fate of polyphosphate in the sludge layer was also studied and it was shown that polyphosphate was degraded resulting in phosphate release. Therefore, to maximise phosphorus removal the microalgae needs to be harvested. Field work showed that at times the biomass contained almost four times the amount of phosphorus required for growth which confirms that luxury uptake does indeed occur in full-scale WSP. To improve phosphorus removal in WSP both luxury uptake and the biomass concentration need to be maximised simultaneously. With this new understanding of biological phosphorus removal in WSP and the key environmental factors required it may be possible to develop a new phosphorus removal process utilising luxury uptake by microalgae.
|
599 |
Layered Double Hydroxide (LDH) Nanoparticle-Based Nucleic Acid Delivery SystemYunyi Wong Unknown Date (has links)
There has been much interest in the use of therapeutics based on ribonucleic acid interference(RNAi) to inhibit synthesis of mutant proteins ever since Elbashir et al. (Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T., 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411, 494-498.) found that synthetic double stranded small interfering ribonucleic acids (siRNAs) can initiate this evolutionarily conserved process in mammalian cells. Since RNAi is able to target single genes and therefore mitigate the underlying molecular pathology of diseases, RNAi-based therapeutics will most likely benefit monogenic neurodegenerative diseases such as Huntington’s disease. It is however particularly difficult to deliver exogenous materials such as siRNAs into neurons in vivo as the blood-brain barrier (BBB) isolates the brain from the vascular system and prevents permeation of most materials. Neurons also do not take up exogenous materials readily. Therefore, effective delivery of siRNAs into the brain remains one of the biggest challenges impeding their use as a potential neurotherapeutic. Layered double hydroxide (LDH) nanoparticles are a class of anionic clay materials that have demonstrated great potential as a DNA (deoxyribonucleic acid) delivery system for a variety of mammalian cell lines due to their unique physiochemical properties. This thesis examined the feasibility of LDH as a siRNA delivery system for cultured neurons and demonstrated that the delivered siRNAs are able to effectively down-regulate synthesis of a target protein with minimal toxicity. Experiments were conducted using double stranded DNAs (dsDNAs) initially, and siRNAs were then used to verify these results. It was shown that nucleic acids(dsDNAs and siRNAs) could successfully intercalate into pristine LDHs to form nucleic acid-LDH complexes that had properties suitable for use as a delivery system in mammalian cells. These studies established that LDHs and nucleic acid-LDH complexes were biocompatible with neurons isolated from embryonic day 17.5 mouse cerebral cortex, suggesting that LDH can be used for nucleic acid delivery into cultured neurons. LDHs were also shown to successfully deliver nucleic acids into a non-neural mammalian cell line (NIH 3T3 cells). Finally, this thesis demonstrated for the first time that LDHs were able to deliver siRNAs into neurons, providing encouraging preliminary evidence that sequence specific gene silencing of the Mus Musculus Deleted in Colorectal Cancer (DCC) gene had occurred. However, down-regulation of the DCC protein did not occur consistently, suggesting that further optimisation is needed to improve the efficacy of siRNA-LDH complexes to inhibit expression of target protein in neurons. In future, LDHs should be further developed as an efficient siRNA delivery system for therapeutic gene silencing in the central nervous system using a neurodegenerative disease model such as the Huntington’s disease mouse model, which closely phenocopies the human disease. This model will allow the in vivo efficacy of these nanoparticles to be tested and subsequently improved in order to deliver siRNAs locally and systematically into the brain.
|
600 |
Layered Double Hydroxide (LDH) Nanoparticle-Based Nucleic Acid Delivery SystemYunyi Wong Unknown Date (has links)
There has been much interest in the use of therapeutics based on ribonucleic acid interference(RNAi) to inhibit synthesis of mutant proteins ever since Elbashir et al. (Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T., 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411, 494-498.) found that synthetic double stranded small interfering ribonucleic acids (siRNAs) can initiate this evolutionarily conserved process in mammalian cells. Since RNAi is able to target single genes and therefore mitigate the underlying molecular pathology of diseases, RNAi-based therapeutics will most likely benefit monogenic neurodegenerative diseases such as Huntington’s disease. It is however particularly difficult to deliver exogenous materials such as siRNAs into neurons in vivo as the blood-brain barrier (BBB) isolates the brain from the vascular system and prevents permeation of most materials. Neurons also do not take up exogenous materials readily. Therefore, effective delivery of siRNAs into the brain remains one of the biggest challenges impeding their use as a potential neurotherapeutic. Layered double hydroxide (LDH) nanoparticles are a class of anionic clay materials that have demonstrated great potential as a DNA (deoxyribonucleic acid) delivery system for a variety of mammalian cell lines due to their unique physiochemical properties. This thesis examined the feasibility of LDH as a siRNA delivery system for cultured neurons and demonstrated that the delivered siRNAs are able to effectively down-regulate synthesis of a target protein with minimal toxicity. Experiments were conducted using double stranded DNAs (dsDNAs) initially, and siRNAs were then used to verify these results. It was shown that nucleic acids(dsDNAs and siRNAs) could successfully intercalate into pristine LDHs to form nucleic acid-LDH complexes that had properties suitable for use as a delivery system in mammalian cells. These studies established that LDHs and nucleic acid-LDH complexes were biocompatible with neurons isolated from embryonic day 17.5 mouse cerebral cortex, suggesting that LDH can be used for nucleic acid delivery into cultured neurons. LDHs were also shown to successfully deliver nucleic acids into a non-neural mammalian cell line (NIH 3T3 cells). Finally, this thesis demonstrated for the first time that LDHs were able to deliver siRNAs into neurons, providing encouraging preliminary evidence that sequence specific gene silencing of the Mus Musculus Deleted in Colorectal Cancer (DCC) gene had occurred. However, down-regulation of the DCC protein did not occur consistently, suggesting that further optimisation is needed to improve the efficacy of siRNA-LDH complexes to inhibit expression of target protein in neurons. In future, LDHs should be further developed as an efficient siRNA delivery system for therapeutic gene silencing in the central nervous system using a neurodegenerative disease model such as the Huntington’s disease mouse model, which closely phenocopies the human disease. This model will allow the in vivo efficacy of these nanoparticles to be tested and subsequently improved in order to deliver siRNAs locally and systematically into the brain.
|
Page generated in 0.043 seconds