Spelling suggestions: "subject:"erzbergbau"" "subject:"bergbau""
11 |
Urankontamination von Fliessgewässern - Prozessdynamik, Mechanismen und Steuerfaktoren Untersuchungen zum Transport von gelöstem Uran in bergbaulich gestörten Landschaften unterschiedlicher KlimateWinde, Frank January 2007 (has links)
Zugl.: Jena, Univ., Habil.-Schr., 2007
|
12 |
Hydrogeochemical and radiometric investigation of the uranium tailings SchneckensteinNaamoun, Taoufik 03 December 2009 (has links)
The main goal of this thesis is the evaluation of the environmental contamination risk from the tailings materials. In order to achieve this task, hydrogeological, mineralogical, geochemical, hydrochemical, and isotope studies were conducted at the uranium tailings Schneckenstein. Four cores were taken at the tailing sites by drilling to different depths. Two borings were located in each tailing respectively. Samples were collected at an interval of 1 m. From the study, the cover layers has a coefficient of permeability of approximately 10-5 m/s, whereas for the tailings material, it ranges between 10-8 and 10-7 m/s except the last two intervals of the fourth borehole. The dry density is very low, whereas the grain density exceed 2.7 g/cm³ in almost all the materials. The total porosity is very high exceeding 30 % in almost all tailings. In addition, the infiltration rate in the tailings is low with a mean value approximately 8.8 cm/a. Muscovite and quartz dominate the mineralogy of the tailing sediments. For the analysed elements, the non residual fraction is in association with the iron and manganese oxides. Hence, the decrease of the oxygen contents in the environment will increase their solubility. Assuming an equilibrium between most of the radionuclides in the uranium chain before the ore processing and assuming that radium has not left the system e.g. as solute in water, not more than about 70 % of the total uranium content was removed during the ore processing. Also, the presence of organic matter and sulphur in the tailings material are the major factors controlling the solubility of elements in the areas. The hydrochemical model PHREEQC shows high solubility of most of elements. It also shows the change in chemical conditions between the heap materials and the tailing sediments which is characterised by a decrease of the Eh values with depth. This indicates the change of the medium to post aerobic or anaerobic conditions.
|
13 |
Zur chemischen Identifizierung und Visualisierung von Uran-Spezies in Biofilmen und Euglena mutabilis Zellen: Zur chemischen Identifizierung und Visualisierung von Uran-Spezies in Biofilmen und Euglena mutabilis ZellenBrockmann, Sina 14 November 2013 (has links)
Zur Risikoabschätzung anthropogener Uraneinträge in die Umwelt ist ein umfassendes Verständnis der ablaufenden Migrations- und Immobilisationsprozesse notwendig, da eine unkontrollierte Freisetzung von Uran z.B. beim Uranerzabbau zur Bedrohung für die Gesundheit von Mensch und Tier werden kann. Hierfür sind umfassende Studien zu den Wechselwirkungen von Uran mit verschiedenen Bestandteilen der Umwelt nötig. Dabei spielt neben geologischen Materialien besonders die Biosphäre, im Speziellen die Wechselwirkungen mit Mikroorganismen und Biofilmen, eine große Rolle.
Ziel dieser Arbeit war die Untersuchung und Beschreibung natürlicher Biofilme aus realen Uran-kontaminierten Gebieten und deren Auswirkung auf die Uranmigration. Zur Untersuchung von Speziation und Lokalisation des Urans in den ausgewählten Biosystemen wurde in dieser Arbeit vorrangig ein gekoppeltes System aus konfokaler Laser-Scanning Mikroskopie (CLSM) und laserinduzierter Fluoreszenzspektroskopie (LIFS) angewendet. Dieses System ermöglicht die räumlich aufgelöste Detektion von Fluoreszenzspektren der eingelagerten Uranakkumulationen in heterogenen biologischen Proben.
Natürliche Biofilme von zwei urankontaminierten Standorten, dem ehemaligen Uranbergwerk in Königstein (Sachsen) und dem Gebiet der ehemaligen Aufstandsfläche der Gessenhalde (Thüringen), wurden in dieser Arbeit näher untersucht. An beiden Standorten wurden Biofilme bis zu mehreren Zentimetern Dicke unter den extremen Umgebungs-bedingungen in den Minenabwässern vorgefunden. Dabei repräsentieren die ausgewählten Proben typische Biofilmgemeinschaften aus sauren Minenabwässern und sind exemplarisch für potentiell auftretende Szenarien sowohl für untertage als auch über Tage gelegene Bergbauregionen. Die Wässer beider Standorte waren besonders durch sehr niedrige pH-Werte (Königstein: 2,6 – 3,1; Gessenwiese: 3,6 – 3,9), hohe Sulfat-konzentrationen (Königstein: (707 – 2520) mg/l; Gessenwiese: (3520 – 5887) mg/l), eine vorliegende Kontamination mit Uran (Königstein: (9,3 – 69,5) mg/l; Gessenwiese: (75,1 - 1450) µg/l) und eine Belastung mit zahlreichen weiteren Schwermetallen charakterisiert. An beiden Standorten konnte in den Minenwässern die hochmobile, gelöste Uranspezies Uranylsulfat (UO2SO4) als dominierend nachgewiesen werden.
Untersuchungen zur Biofilmstruktur sowie möglichen Uraneinlagerungen und Ausfällungen mittels des CLSM/LIFS-Systems zeigten, besonders bei den Biofilmen aus Königstein, deren Mikroorganismen kaum Eigenfluoreszenz aufwiesen, Probleme mit der Visualisierung der Biofilmstruktur. Aufgrund der Instabilität vieler kommerzieller Fluoreszenzfarbstoffe bei niedrigen pH-Werten war eine gezielte Anfärbung der Mikroorganismen in den sauren Biofilmen nicht möglich, ohne den pH-Wert der Biofilmproben anzuheben, was die Probenchemie maßgeblich verändert. In Kooperation mit der Firma DYOMICS (Jena, Deutschland) wurden neue, kommerziell nicht erhältliche, säurestabile Farbstoffe erstmals hinsichtlich ihrer Eignung zur Anfärbung von Mikroorganismen in sauren Biofilmen ohne Veränderung des pH-Wertes sowie der sonstigen Probenchemie getestet. Die neuen Farbstoffe DY-601XL, V07-04118, V07-04146 und DY-613 zeigten eine Eignung für solche Färbungen, da sie eine intensive Anfärbung der Mikroorganismen bei niedrigen pH-Werten unter pH 3 – 4 herbeiführen und außerhalb des Emissionsbereiches von Uran fluoreszieren.
Die Strukturen der phototrophen Biofilme der Gessenwiese, welche viele autofluoreszierende Mikroorganismen enthielten, konnten mittels CLSM/LIFS sehr gut dargestellt werden. Aufgrund der kontinuierlichen, ungepulsten Anregung zeigten sich starke Überlagerungen der Eigenfluoreszenzsignale der Probenbiologie mit den zu untersuchenden Uransignalen. Eine Auftrennung dieser Signale zur spezifischen Urananalytik war bei den Urankonzentrationen, wie sie in Biofilmen aus natürlichen, durch saure Minenabwässer belasteten Gebieten vorkamen, aufgrund verschiedener technischer Limitationen des gekoppelten CLSM/LIFS-Systems nicht möglich. Um den umweltrelevanten Charakter dieser Studien beizubehalten, wurden die natürlichen Biofilmproben jedoch nicht künstlich mit erhöhten Urankonzentrationen versetzt, stattdessen wurde besonderer Wert auf die Beschreibung der realen Wechselwirkungen mit originalen, unveränderten Biofilmen gelegt.
Aufgrund der Komplexität der natürlichen Biofilmproben sollten die Wechselwirkungen von Uran mit Monokulturen eines ausgewählten eukaryotischen Einzellers, welcher typisch in sauren Uran- und schwermetallbelasteten Wässern wie z.B. in den Biofilmen von der Gessenwiese anzutreffenden ist, detaillierter untersucht werden. Erstmalig wurden hierzu in dieser Arbeit die Wechselwirkungen von Uran mit Euglena mutabilis Zellen untersucht. Dabei wurde die Fähigkeit der Euglena-Zellen zur Bioakkumulation des Urans im pH-Wertbereich 3 – 6 in den Hintergrundmedien Natriumperchlorat (9 g/l) oder Natriumsulfat (3,48 g/l) an lebenden Zellen untersucht. Uran wurde hierbei in einer für saure Minenabwässer relevanten Konzentration von 0,01 mM in der Ausgangslösung vorgelegt. Unabhängig vom Medium konnte bei sauren pH-Werten um pH 3 – 4 über 90 % des vorgelegten Urans aus den Probelösungen abgetrennt werden. Vor dem Hintergrund einer möglichen Anwendung dieser Zellen zur Reinigung kontaminierter saurer Minenabwässer ist die hohe Immobilisierungsrate für Uran speziell im sauren pH-Bereich besonders attraktiv.
Lebende, metabolisch aktive Zellen zeigten sich innerhalb dieser Studie in der Lage, größere Mengen Uran zu binden als tote Zellbiomasse. So wurden in Bioakkumulations-versuchen mit erhöhten Urankonzentrationen von 0,5 mM maximale Uranakkumulationen an den Euglena-Zellen von (33,16 ± 0,2) mg/g für lebende Zellen und (12,97 ± 0,7) mg/g für tote Zellen gemessen. An toten Zellen findet dabei ein reiner Biosorptionsprozess des Urans an die vorhandenen Bindungsstellen der Zellen statt, welcher innerhalb weniger Minuten (< 20 min) abgeschlossen ist. Bei lebenden, metabolisch aktiven Zellen wurde deutlich mehr Zeit benötigt bis die gleiche Uranmenge wie bei toten Zellen aufgenommen wurde. Dies ist ein Indiz für einen anfänglichen Abwehrmechanismus und einen insgesamt aktiven Umgang der lebenden Zellen mit dem Uran.
Bei Bioakkumulationsversuchen an Euglena mutabilis Zellen unter Verwendung von realen, sauren, urankontaminierten Wässern wurden signifikant schlechtere Immobilisations-raten für Uran detektiert ((0 – 3,6) mg U/gEuglenaBtm). Ursache hierfür ist der Wettbewerb des Urans mit den vielfältigen anderen Inhaltstoffen in den natürlichen Wässern um die verfügbaren Sorptionsstellen an den Zellen. Dies verdeutlicht die Schwierigkeit, Erkenntnisse aus Laborexperimenten direkt auf natürliche Prozesse anzuwenden und verdeutlicht die Notwendigkeit in zukünftigen Untersuchungen, auf eine entsprechende Umweltrelevanz der Versuchsbedingungen zu achten.
Die Speziation des an den Euglena-Zellen akkumulierten Urans, wurde mittels laserinduzierter Fluoreszenzspektroskopie (LIFS) untersucht. Es zeigte sich, dass unabhängig vom Hintergrundmedium, Lebenszustand und pH-Wert eine vergleichbare neue Uranspezies an den Zellen gebildet wird. Die detektierten Emissionsmaxima des Uranfluoreszenzsignals, gemessen an den Euglena-Zellen lagen bei 478,4 nm, 495,6 nm, 517,1 nm, 540,4 nm, 565,3 nm, 590,1 nm. Durch den Vergleich der Daten aus den LIFS-Messungen mit Referenzwerten, konnte die gebildete Uranspezies auf eine Anbindung durch (organo)phosphatische und/oder carboxylische funktionelle Gruppen eingegrenzt werden. Mit Hilfe der zeitaufgelösten FT-IR-Spektroskopie wurde erstmals der Biosorptionsprozess direkt an der Grenzfläche zwischen Euglena-Zellen und Uranlösung untersucht. Dabei konnte die carboxylische Anbindung des Urans an toten Zellen nachgewiesen werden. Ein Ausschluss der (organo)phosphatischen Komplexierung konnte jedoch mit dieser Methode nicht geführt werden.
Untersuchungen zur Lokalisation des Urans an bzw. in den Zellen, mittels der gekoppelten CLSM/LIFS-Technik zeigten erstmals ein Indiz für die intrazelluläre Akkumulation von Uran in den lebenden Zellen. Ergänzende TEM/EDX-Messungen bestätigten die intrazelluläre Aufnahme und belegen eine Akkumulation in runden bis ovalen Zellorganellen, bei denen es sich vermutlich um Vakuolen oder Vakuolen-ähnliche Vesikel handelt. An den toten Zellen konnte mit diesen Methoden kein Uran detektiert werden. Dies lässt auf eine passive, homogen verteilte Biosorption des Urans an die verfügbaren Bindungsplätze an der Zelloberfläche der toten Biomasse schließen.
Die Ergebnisse dieser Arbeit leisten einen Beitrag zum Prozessverständnis der Wechselwirkungen von Uran mit Biofilmen und speziell mit Euglena mutabilis Zellen. Auf Grundlage der erhaltenen Erkenntnisse können Risiken in natürlichen kontaminierten Gebieten besser eingeschätzt werden und Vorhersagen zum Migrationsverhalten des Urans entsprechend der vorliegenden Bedingungen optimiert werden.
|
14 |
Hydrogeochemical and radiometric investigation of the uranium tailings SchneckensteinNaamoun, Taoufik 03 December 2009 (has links) (PDF)
The main goal of this thesis is the evaluation of the environmental contamination risk from the tailings materials. In order to achieve this task, hydrogeological, mineralogical, geochemical, hydrochemical, and isotope studies were conducted at the uranium tailings Schneckenstein. Four cores were taken at the tailing sites by drilling to different depths. Two borings were located in each tailing respectively. Samples were collected at an interval of 1 m. From the study, the cover layers has a coefficient of permeability of approximately 10-5 m/s, whereas for the tailings material, it ranges between 10-8 and 10-7 m/s except the last two intervals of the fourth borehole. The dry density is very low, whereas the grain density exceed 2.7 g/cm³ in almost all the materials. The total porosity is very high exceeding 30 % in almost all tailings. In addition, the infiltration rate in the tailings is low with a mean value approximately 8.8 cm/a. Muscovite and quartz dominate the mineralogy of the tailing sediments. For the analysed elements, the non residual fraction is in association with the iron and manganese oxides. Hence, the decrease of the oxygen contents in the environment will increase their solubility. Assuming an equilibrium between most of the radionuclides in the uranium chain before the ore processing and assuming that radium has not left the system e.g. as solute in water, not more than about 70 % of the total uranium content was removed during the ore processing. Also, the presence of organic matter and sulphur in the tailings material are the major factors controlling the solubility of elements in the areas. The hydrochemical model PHREEQC shows high solubility of most of elements. It also shows the change in chemical conditions between the heap materials and the tailing sediments which is characterised by a decrease of the Eh values with depth. This indicates the change of the medium to post aerobic or anaerobic conditions.
|
15 |
Übersicht zu Uranlagerstätten und UranmineralenBoeck, Helmut-Juri 04 March 2017 (has links)
Dokumentationen zum Sächsischen Bergbau, Reihe 3: Zum Uranerzbergbau der SAG / SDAG Wismut:Inhalt:
Wo die „Sonnensucher“ suchten:
Die sächsisch-thüringischen Uranerzlagerstätten .............................................
Die Lagerstätten ......................................................................................................
Gangtyp (hydrothermale Ganglagerstätten des Erzgebirges) .................................
Schwarzschiefertyp (Erzfeld Ronneburg) ................................................................
Sandsteintyp (Königstein, Culmitzsch) ..................................................................
Lignittyp (Erzkohle in Freital-Gittersee) .................................................................
Vulkanittyp (Erkundungsgebiet Delitzscher Hochscholle) .....................................
Andere Uranerzvorkommen in Deutschland..........................................................
Weitere Lagerstättentypen außerhalb Deutschlands ............................................
Was die „Sonnensucher“ suchten:
Uranminerale aus Sachsen ................................................................................
Das Element Uran – ein paar Fakten ....................................................................
Geschichte ............................................................................................................
Die Wismut ............................................................................................................
Eigenschaften des Urans ......................................................................................
Geochemie ............................................................................................................
Beispiele von Uranmineralen ................................................................................
Oxide und Hydroxide .............................................................................................
Karbonate und Verwandte (Nitrate, Borate) ..........................................................
Sulfate und verwandte Verbindungen (Chromate, Molybdate, Wolframate) ..........
Phosphate und verwandte Verbindungen (Arsenate, Vanadate) ...........................
Silikate ..................................................................................................................
Quellenangaben ....................................................................................................
Impressum ............................................................................................................
|
16 |
Drei Epochen Bergbaugeschichte: Gesellschafter Fundschacht, St. Jacob Stolln und Wismut- Schacht 99Boeck, Helmut-Juri 04 March 2017 (has links)
No description available.
|
17 |
Ein Blick in die „wilden Jahre“ der Wismut: Das Erkundungsrevier „Sehmatal“ bei BärensteinBoeck, Helmut-Juri 04 March 2017 (has links)
No description available.
|
18 |
Ein Blick in die „wilden Jahre“ der Wismut: Das Erkundungsrevier „August“ bei RaschauBoeck, Helmut-Juri 04 March 2017 (has links)
No description available.
|
19 |
Das Berggebäude Hohe Tanne in JohanngeorgenstadtMahlow, Enrico, Stark, Jörg 27 May 2024 (has links)
No description available.
|
20 |
Festlegung von Radionukliden und Arsen in Feuchtgebieten an Bergbaualtstandorten – Ein Beitrag zur Passiven WasserreinigungDienemann, Holger 11 February 2009 (has links) (PDF)
Im Abstrom von Uranbergbauobjekten (Sachsen, Deutschland) wurden Uran, Radium-226 und Arsen in unterschiedlichen Feuchtgebieten untersucht. Dabei wurden Wasser (vor¬wiegend neutrale bis leicht basische pH-Werte), Sedimente und im Wasser befindlicher Bestandesabfall (CPOM) beprobt. Zur Klärung der Genese der Urangehalte im Sediment erfolgten Untersuchungen an Pb-Isotopen. Sie zeigen u. a., dass das Uran in den obersten Zentimetern des Sediments (organische Auflage) aus der wässrigen Phase und nicht von ca. 300 Millionen Jahre alten Erzteilchen stammt. Für die Verlagerung von Radionukliden und Arsen aus dem Wasserkörper in das Sediment wird ein neuer Weg aufgezeigt. Eine Fixierung dieser Stoffe an Bestandesabfällen (plant litter) ist möglich. Allochthoner Bestandesabfall (Blätter, Früchte, Zweige von Alnus spec. und Quercus spec.) weist nach Kontakt mit kontaminiertem Wasser (ca. 100 - 300 µgU L-1) Urangehalte von 50 - 2.000 µgU g-1 auf. Im Vergleich zu Uran sind Ra-226 und Arsen labiler am Bestandesabfall gebunden. Für die Genese der Gehalte in den subhydrischen Auflagen sind die Herkunft des (autochthonen bzw. allochthonen) Bestandesabfalls und der Abbau eine entscheidende Rolle. Sedimente aus leicht abbaubaren Bestandesabfällen (z.B. Lemna spec., Algen) weisen im Vergleich mit allochthonen Bestandesabfällen (von Bäumen) deutlich geringere Urangehalte auf. Exemplarisch wurde für einen aus allochthonen Bestandesabfällen bestehenden Sedimentkern mittels Cs-137-Bestimmung eine maximale Uranfestlegung von 1 – 2 g m-² a-1 ermittelt. Neben allochthonem Bestandesabfall führen Eisen- und Manganhydroxide, die unmittelbar an den Sickerwasseraustrittstellen ausfallen, bei relativ geringen Arsen- und Radiumkon¬zentrationen im Wasser zu hohen Arsen- bzw. Radiumgehalten im Sediment (As ≤ 5 mg g-1; Ra-226 ≤ 25 Bq g-1). Unter reduktiven Bedingungen werden Ra-226 und Arsen jedoch leicht freigesetzt. Ausgehend von den Untersuchungsergebnissen wird eine mögliche Anordnung für eine naturnahe passive Sickerwasserbehandlung vorgeschlagen.
|
Page generated in 0.0553 seconds