• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 734
  • 541
  • 128
  • 75
  • 47
  • 28
  • 22
  • 18
  • 16
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • Tagged with
  • 1928
  • 654
  • 612
  • 199
  • 198
  • 192
  • 183
  • 179
  • 175
  • 152
  • 145
  • 140
  • 139
  • 119
  • 116
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Direct Growth of Carbon Nanotubes on Inconel Sheets Using Hot Filament Chemical Vapor Deposition

Yi, Wenwen 24 March 2009
Carbon nanotubes (CNTs) have great potential in many applications due to their unique structure and properties. However, there are still many unsolved problems hampering their real applications. This thesis focuses on three important issues limiting their applications, namely: (1) direct growth of CNTs without additional catalyst, (2) secondary growth of carbon nanotubes on primary CNT bed without using extra catalyst, (3) and CNT alignment mechanisms during the growth.<p> The CNTs used in this thesis were prepared by hot filament chemical vapor deposition (CVD) reactor and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), and Raman spectroscopy. Field electron emission (FEE) properties of the CNTs were also tested.<p> Oxidation-reduction method was adopted in direct growth of CNTs on Inconel 600 plates and proved effective. The effect of oxidation temperature on the growth of CNTs was studied. It was found that the oxidation temperature had an influence on CNT height uniformity and FEE properties: the higher the treatment temperature, the more uniform the resultant CNTs, and the better the FEE properties of the resultant CNTs. The contribution of different oxides formed at different temperatures were investigated to explain the effect of oxidation temperature on the CNT height uniformity.<p> Secondary CNTs were grown on primary ones by simply changing the carbon concentration. No additional catalyst was used during the whole deposition process. It was found that synthesizing primary CNTs at extremely low carbon concentration is key factor for the secondary growth without additional catalyst. The CNT sample grown with secondary nanotubes exhibited improved field emission properties.<p> The effect of bias voltage on growth of vertically aligned carbon nanotubes was investigated. The CNTs grown at -500V shows the best alignment. At the early growth stage, simultaneous growth of randomly oriented and aligned carbon nanotubes was observed. This was consistent with the alignment mechanism involving stress that imposed on catalyst particles on tube tips. Through the observation of CNT growth on the scratched substrates, catalyst particle size was found as another determining factor in the alignment of CNTs. Big catalyst particles promoted aligned growth of CNTs.
472

Field electron emission from diamond and related films synthesized by plasma enhanced chemical vapor deposition

Lu, Xianfeng 21 December 2006
The focus of this thesis is the study of the field electron emission (FEE) of diamond and related films synthesized by plasma enhanced chemical vapor deposition. The diamond and related films with different morphologies and compositions were prepared in a microwave plasma-enhanced chemical vapor deposition (CVD) reactor and a hot filament CVD reactor. Various analytical techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy were employed to characterize the surface morphology and chemical composition.<p>The influence of surface morphology on the field electron emission property of diamond films was studied. The emission current of well-oriented microcrystalline diamond films is relatively small compared to that of randomly oriented microcrystalline diamond films. Meanwhile, the nanocrystalline diamond film has demonstrated a larger emission current than microcrystalline diamond films. The nanocone structure significantly improves the electron emission current of diamond films due to its strong field enhancement effect.<p>The sp2 phase concentration also has significant influence on the field electron emission property of diamond films. For the diamond films synthesized by gas mixture of hydrogen and methane, their field electron emission properties were enhanced with the increase of methane concentration. The field electron emission enhancement was attributed to the increase of sp2 phase concentration, which increases the electrical conductivity of diamond films. For the diamond films synthesized through graphite etching, the growth rate and nucleation density of diamond films increase significantly with decreasing hydrogen flow rate. The field electron emission properties of the diamond films were also enhanced with the decrease of hydrogen flow rate. The field electron emission enhancement can be also attributed to the increase of the sp2 phase concentration. <p>In addition, the deviation of the experimental Fowler-Nordheim (F-N) plot from a straight line was observed for graphitic nanocone films. The deviation can be mainly attributed to the nonuniform field enhancement factor of the graphitic nanocones. In low macroscopic electric field regions, electrons are emitted mainly from nanocone or nanocones with the largest field enhancement factor, which corresponds to the smallest slope magnitude. With the increase of electric field, nanocones with small field enhancement factors also contribute to the emission current, which results in a reduced average field enhancement factor and therefore a large slope magnitude.
473

Synthesis of Single- and Double-Wall Carbon Nanotubes by Gas Flow-Modified Catalyst-Supported Chemical Vapor Deposition

SHINOHARA, Hisanori, SUGAI, Toshiki, KISHI, Naoki 01 December 2009 (has links)
No description available.
474

Estudio experimental del proceso de calentamiento de medios porosos saturados hasta ebullición-"Dryout" de su fase líquida

Carbonell Ventura, Montserrat 04 February 2000 (has links)
La experimentación y posterior modelización de los procesos de transporte y transferencia de calor y de masa en medios poroso saturados encuentra un gran número de dificultades que se derivan fundamentalmente de la heterogeneidad del propio medio, de la metodología de su parametrización estructural y física para asimilarlo a un medio continuo.Los objetivos planteados en la presente tesis se han orientado hacia un mejor conocimiento de la influencia de diversos parámetros estructurales del medio poroso, así como de las propiedades de las substancias que constituyen la matriz sólida y la fase fluida saturante, en las características de ebullición de un medio poroso inicialmente saturado, calentado por su frontera inferior y limitado por una capa superior del mismo líquido saturante.A tal fin, se ha estudiado la influencia de la estructura del medio poroso (granular o fibrilar) y de la naturaleza de la sustancia que constituye la matriz sólida sobre la permeabilidad del medio poroso al agua y a una solución acuosa de tensioactivo, de baja concentración. Así mismo se ha estudiado la influencia respecto a la conductividad y difusividad térmicas efectivas en régimen no estacionario. Por último, utilizando la misma variedad de medios porosos saturados, se estudia el proceso de ebullición hasta que se alcanzan condiciones de "dryout", y se analizan las consecuencias que resultan de la variación de la estructura física del medio poroso, de la naturaleza de la sustancia que constituye su matriz sólida y de las propiedades del fluido saturante.En lo referente a las características fluidodinámicas y térmicas de los medios porosos estudiados se ha podido concluir:- La adición de un tensioactivo al agua saturante del medio poroso produce un comportamiento diferente según la naturaleza del sólido: en caso de inorgánica (arena) ocasiona un aumento de la permeabilidad intrínseca, mientras que en caso de orgánica (fibras de algodón) produce una reducción tanto mayor cuanto menor es la porosidad del medio poroso. Las causas de este diferente comportamiento, son las notables diferencias de absorción del tensioactivo según el tipo de sólido (orgánico o inorgánico) y la mejora substancial de la humectación de la superficie del sólido inorgánico por el fluido lo que activa la eficacia de desplazamiento de toda fase no acuosa adsorbida o retenida entre partículas.- La difusividad térmica efectiva promediada espacialmente tiende al valor de la difusividad del componente del medio poroso de menor difusividad térmica a medida que transcurre el tiempo de calentamiento.- La difusividad térmica efectiva de los medios porosos saturados en los que &#61548;s / &#61548;l < 1 se aproxima a la de la fase líquida; en los medios para los que &#61548;s / &#61548;l >> 1, dicha difusividad térmica efectiva es un grado de orden superior a la de la fase líquida.- La adición de tensioactivo a la fase líquida saturante provoca la disminución de la conductividad térmica efectiva de medio poroso saturado en aquellos en que la fase sólida es granular e inorgánica.En lo referente al proceso de calentamiento de un medio poroso saturado hasta ebullición-"dryout" de su fase líquida se ha descrito un modelo físico de comportamiento de los diferentes medios porosos que comporta las siguientes fases:i) Calentamiento del medio hasta la temperatura de saturación de su fase líquida, con evidente aumento de volumen de las fases sólida y líquida por dilatación térmica.ii) Proceso de evaporación con formación de una capa bifásica cuya frontera superior se desplaza a la velocidad del frente de vapor. Simultáneamente se produce una disminución de la presión fluidoestática en la frontera de la capa bifásica, lo que se traduce en una reducción del reflujo de líquido hacia la placa calefactora.iii) Total desaturación de la entrefase medio poroso-placa calefactora al recibir por reflujo menos líquido del que es capaz de evaporar la placa calefactora. Aparición del "dryout" y elevación progresiva de la temperatura de la placa.iv) Aparición, en algún caso, de un fenómeno de basculamiento de la fase líquida desde la capa subenfriada a la zona desaturada del medio poroso. / A large number of difficulties are found in the experimentation and later modelization of transport and transfer heat and mass process in saturated porous media, which basically derive from the heterogeneity of the medium, the methodology of structural and physic parameterization to assimilate it to a continuous medium.The raised aims in this doctoral thesis have been directed towards a better knowledge of the influence of several structural parameters of the porous medium, as well as of the properties of the solid matrix and the saturating fluid phase, in the characteristics of boiling of an initially saturated porous medium, heated by its lower boundary and limited by an upper layer of the same saturating liquid.For this, the influence of the structure of the porous medium (granular or fibrous) and the nature of the solid matrix on the permeability to water and to a surfactant solution of lower concentration have been studied. The influence in relation to effective thermal conductivity and diffusivity in unstationary regime has also been studied. Finally, the boiling process until to achieve dryout conditions has been studied, and the consequences result from the variation of the physical structure of the porous medium, the nature of the solid matrix and the properties of the saturating fluid have been analyzed.About the fluid dynamic and thermal characteristics of the porous media studied, the thesis concludes that:- The addition of a surfactant to the saturating water of the porous medium produces a different behaviour depending on the nature of the solid: in inorganic matrix (sand) occasions an increase in the intrinsic permeability, whereas in organic matrix (cotton fibres) produces a decrease as greater as smaller is the porosity of the porous medium. The reasons of this different behaviour are the notable differences of absorption of the surfactant depending on the sort of solid matrix (organic or inorganic) and the important increase of the wetting of the inorganic solid's surface by the fluid activating the displacement of all adsorbed or retained not watery phase between particles.- The spatially averaged effective thermal diffusivity tends to the value of the diffusivity of the component of the porous medium with lower thermal diffusivity throughout the boiling process.- The effective thermal diffusivity of the saturated porous media which have &#61548;s / &#61548;l < 1 approaches to of the liquid phase; in the media with &#61548;s / &#61548;l >> 1, the effective thermal diffusivity is a grade of upper order to the of liquid phase.- The addition of surfactant to the saturating liquid phase gives rise to the decrease of the effective thermal conductivity of the saturated porous medium with granular and inorganic solid phase. A physical model of behaviour of the different saturated porous media concerning heating process until to achieve dryout conditions has been described considering the next phases:i) Heating of the medium until the saturation temperature of its liquid phase, with evident increase of volume of the solid and liquid phases by thermal dilatation.ii) Evaporation process with creation of a biphasic layer whose upper boundary displaces to the velocity of the vapour front. Simultaneously a decrease of the fluid static pressure in the boundary of the biphasic layer is produced, what result in a reduction of the reflux of liquid towards the heating plate.iii) Total unsaturation of the porous medium-heating plate interphase caused by to receive less liquid by reflux that the heating plate is capable of evaporating.iv) Appearance, in some case, of a fast phenomenon of turn upside down of the liquid phase from subcooled layer to the unsaturated zone of the porous medium.
475

En defensa de la máquina de vapor

Pérez del Río, José 29 June 1983 (has links)
Esta tesis tiene el doble objeto de explicar porqué las máquinas de vapor desaparecieron casi totalmente y de demostrar como y porqué hay que volver a ellas, principalmente quemando carbón, todo ello para inducir a su aplicación solamente en aquellas potencias que en Marina se consideran pequeñas, es decir, que no sobrepasen los cinco mil caballos.Con tal fin han de aplicarse como es obvio, los conocimientos actuales pero tomando cuidadosamente en cuenta las experiencias, positivas y negativas, de la época pasada.Para una mayor claridad, el desarrollo de la tesis se ha dividido en cuatro partes que corresponden así a los cuatro temas, dos principales y dos menores, de que consta y que son:Tema primero: Como eran, realmente, las máquinas de vapor de la época pasada y porqué desaparecieron.Tema segundo: Como deberían ser las máquinas de vapor de la época venidera y particularidades más esenciales de su proyecto.Tema tercero: La cuestión de los consumos específicos.Tema cuarto: Cualidades generales de la máquina de vapor.
476

Aproximación al estudio del riesgo del bleve y sus efectos en los generadores marinos de vapor y los tanques de carga de los buques LNG-LPG. Aplicación comparativa de las normas que lo regulan y previenen

Melo Rodríguez, Germán de 04 July 1994 (has links)
BELEVE son las iniciales de la siguiente expresión inglesa "Boiling Liquid Expanding Vapor Explosion" que traducido librementes ignifica "Explosión de los Vapores que se expanden al hervir un líquido".La ELEVE es comúnmente definida como la ruptura en varios pedazos de un recipiente, con proyección a grandes distancias, superiores a las que las desplazarían la simple energía de un estallido, que se da en determinadas circunstancias, siendo necesario, pero no suficiente, que el líquido contenido en el recipiente, posea una temperatura superior a la que le correspondería tener si estuviera a la presión atmosférica normal. Por tanto, la temperatura de ebullición debe ser bastante menor que la temperatura a la que se encuentre la masa líquida en el recipiente, es decir, lo que se llama o denomina líquido sobrecalentado.El fenómeno ELEVE es una manifestación exclusiva de los líquidos sobrecalentados, no debiéndose confundir con las explosiones que se producen en los recipientes que solamente contienen gas, pues las energías desarrolladas por la explosión de este último, no son en absoluto comparables a las elevadas del fenómeno ELEVE.En el caso de que el fenómeno ELEVE se manifieste en un recipiente que contiene líquido que es químicamente reactivo o combustible, agrava el problema de la ELEVE propiamente dicho, ya que anteriormente se ha indicado que un ELEVE se puede producir en una caldera de vapor de agua.Las condiciones necesarias que se han de dar simultáneamente.
477

Multi-scale Modeling of Chemical Vapor Deposition: From Feature to Reactor Scale

Jilesen, Jonathan January 2009 (has links)
Multi-scale modeling of chemical vapor deposition (CVD) is a very broad topic because a large number of physical processes affect the quality and speed of film deposition. These processes have different length scales associated with them creating the need for a multi-scale model. The three main scales of importance to the modeling of CVD are the reactor scale, the feature scale, and the atomic scale. The reactor scale ranges from meters to millimeters and is called the reactor scale because it corresponds with the scale of the reactor geometry. The micrometer scale is labeled as the feature scale in this study because this is the scale related to the feature geometries. However, this is also the scale at which grain boundaries and surface quality can be discussed. The final scale of importance to the CVD process is the atomic scale. The focus of this study is on the reactor and feature scales with special focus on the coupling between these two scales. Currently there are two main methods of coupling between the reactor and feature scales. The first method is mainly applied when a modified line of sight feature scale model is used, with coupling occurring through a mass balance performed at the wafer surface. The second method is only applicable to Monte Carlo based feature scale models. Coupling in this second method is accomplished through a mass balance performed at a plane offset from the surface. During this study a means of using an offset plane to couple a continuum based reactor/meso scale model to a modified line of sight feature scale model was developed. This new model is then applied to several test cases and compared with the surface coupling method. In order to facilitate coupling at an offset plane a new feature scale model called the Ballistic Transport with Local Sticking Factors (BTLSF) was developed. The BTLSF model uses a source plane instead of a hemispherical source to calculate the initial deposition flux arriving from the source volume. The advantage of using a source plane is that it can be made to be the same plane as the coupling plane. The presence of only one interface between the feature and reactor/meso scales simplifies coupling. Modifications were also made to the surface coupling method to allow it to model non-uniform patterned features. Comparison of the two coupling methods showed that they produced similar results with a maximum of 4.6% percent difference in their effective growth rate maps. However, the shapes of individual effective reactivity functions produced by the offset coupling method are more realistic, without the step functions present in the effective reactivity functions of the surface coupling method. Also the cell size of the continuum based component of the multi-scale model was shown to be limited when the surface coupling method was used. Thanks to the work done in this study researchers using a modified line of sight feature scale model now have a choice of using either a surface or an offset coupling method to link their reactor/meso and feature scales. Furthermore, the comparative study of these two methods in this thesis highlights the differences between the two methods allowing their selection to be an informed decision.
478

Dynamic modeling and Model Predictive Control of a vapor compression system

Gustavsson, Andreas January 2012 (has links)
The focus of this thesis was on the development of a dynamic modeling capability for a vapor compression system along with the implementation of advanced multivariable control techniques on the resulting model. Individual component models for a typical vapor compression system were developed based on most recent and acknowledged publications within the field of thermodynamics. Parameter properties such as pressure, temperature, enthalpy etc. for each component were connected to detailed thermodynamic tables by algorithms programmed in MATLAB, thus creating a fully dynamic environment. The separate component models were then interconnected and an overall model for the complete system was implemented in SIMULINK. An advanced control technique known as Model Predictive Control (MPC) along with an open-source QP solver was then applied on the system. The MPC-controller requires the complete state information to be available for feedback and since this is often either very expensive (requires a great number of sensors) or at times even impossible (difficult to measure), a full-state observer was implemented. The MPC-controller was designed to keep certain system temperatures within tight bands while still being able to respond to varying cooling set-points. The control architecture was successful in achieving the control objective, i.e. it was shown to be adaptable in order to reflect changes in environmental conditions. Cooling demands were met and the temperatures were successfully kept within given boundaries.
479

Multi-scale Modeling of Chemical Vapor Deposition: From Feature to Reactor Scale

Jilesen, Jonathan January 2009 (has links)
Multi-scale modeling of chemical vapor deposition (CVD) is a very broad topic because a large number of physical processes affect the quality and speed of film deposition. These processes have different length scales associated with them creating the need for a multi-scale model. The three main scales of importance to the modeling of CVD are the reactor scale, the feature scale, and the atomic scale. The reactor scale ranges from meters to millimeters and is called the reactor scale because it corresponds with the scale of the reactor geometry. The micrometer scale is labeled as the feature scale in this study because this is the scale related to the feature geometries. However, this is also the scale at which grain boundaries and surface quality can be discussed. The final scale of importance to the CVD process is the atomic scale. The focus of this study is on the reactor and feature scales with special focus on the coupling between these two scales. Currently there are two main methods of coupling between the reactor and feature scales. The first method is mainly applied when a modified line of sight feature scale model is used, with coupling occurring through a mass balance performed at the wafer surface. The second method is only applicable to Monte Carlo based feature scale models. Coupling in this second method is accomplished through a mass balance performed at a plane offset from the surface. During this study a means of using an offset plane to couple a continuum based reactor/meso scale model to a modified line of sight feature scale model was developed. This new model is then applied to several test cases and compared with the surface coupling method. In order to facilitate coupling at an offset plane a new feature scale model called the Ballistic Transport with Local Sticking Factors (BTLSF) was developed. The BTLSF model uses a source plane instead of a hemispherical source to calculate the initial deposition flux arriving from the source volume. The advantage of using a source plane is that it can be made to be the same plane as the coupling plane. The presence of only one interface between the feature and reactor/meso scales simplifies coupling. Modifications were also made to the surface coupling method to allow it to model non-uniform patterned features. Comparison of the two coupling methods showed that they produced similar results with a maximum of 4.6% percent difference in their effective growth rate maps. However, the shapes of individual effective reactivity functions produced by the offset coupling method are more realistic, without the step functions present in the effective reactivity functions of the surface coupling method. Also the cell size of the continuum based component of the multi-scale model was shown to be limited when the surface coupling method was used. Thanks to the work done in this study researchers using a modified line of sight feature scale model now have a choice of using either a surface or an offset coupling method to link their reactor/meso and feature scales. Furthermore, the comparative study of these two methods in this thesis highlights the differences between the two methods allowing their selection to be an informed decision.
480

Field electron emission from diamond and related films synthesized by plasma enhanced chemical vapor deposition

Lu, Xianfeng 21 December 2006 (has links)
The focus of this thesis is the study of the field electron emission (FEE) of diamond and related films synthesized by plasma enhanced chemical vapor deposition. The diamond and related films with different morphologies and compositions were prepared in a microwave plasma-enhanced chemical vapor deposition (CVD) reactor and a hot filament CVD reactor. Various analytical techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy were employed to characterize the surface morphology and chemical composition.<p>The influence of surface morphology on the field electron emission property of diamond films was studied. The emission current of well-oriented microcrystalline diamond films is relatively small compared to that of randomly oriented microcrystalline diamond films. Meanwhile, the nanocrystalline diamond film has demonstrated a larger emission current than microcrystalline diamond films. The nanocone structure significantly improves the electron emission current of diamond films due to its strong field enhancement effect.<p>The sp2 phase concentration also has significant influence on the field electron emission property of diamond films. For the diamond films synthesized by gas mixture of hydrogen and methane, their field electron emission properties were enhanced with the increase of methane concentration. The field electron emission enhancement was attributed to the increase of sp2 phase concentration, which increases the electrical conductivity of diamond films. For the diamond films synthesized through graphite etching, the growth rate and nucleation density of diamond films increase significantly with decreasing hydrogen flow rate. The field electron emission properties of the diamond films were also enhanced with the decrease of hydrogen flow rate. The field electron emission enhancement can be also attributed to the increase of the sp2 phase concentration. <p>In addition, the deviation of the experimental Fowler-Nordheim (F-N) plot from a straight line was observed for graphitic nanocone films. The deviation can be mainly attributed to the nonuniform field enhancement factor of the graphitic nanocones. In low macroscopic electric field regions, electrons are emitted mainly from nanocone or nanocones with the largest field enhancement factor, which corresponds to the smallest slope magnitude. With the increase of electric field, nanocones with small field enhancement factors also contribute to the emission current, which results in a reduced average field enhancement factor and therefore a large slope magnitude.

Page generated in 0.1433 seconds