• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 734
  • 541
  • 128
  • 75
  • 47
  • 28
  • 22
  • 18
  • 16
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • Tagged with
  • 1928
  • 654
  • 612
  • 199
  • 198
  • 192
  • 183
  • 179
  • 175
  • 152
  • 145
  • 140
  • 139
  • 119
  • 116
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Polar analyte effects on charge transport and trapping In organic field effect transistor based chemical and vapor sensors

Duarte, Davianne A. 22 June 2011 (has links)
Organic thin film transistors (TFTs) based on the field effect transistor architecture provide a methodology for sensing by exhibiting a change in the transport properties such as shifts in mobility, threshold voltage and conductivity. Chemical recognition is achievable by various methods including the two processes, which we are studying, direct analyte interactions with the semiconductor and specific receptor molecules on the semiconducting surface. Previous work demonstrates the effects of carrier concentration, grain size (surface morphology), and channel length on the sensing response to analytes such as alcohols, which exhibit a moderate dipole moment. When the alcohol interacts with the organic channel the addition of a trap and a positive charge occurs at the grain boundaries. At low carrier concentrations the added charge has the effect of producing an increase in current for the sensing response. At higher carrier concentrations the occurrence of trapping overwhelms the effect of the positive charge and you see and reduction in current. Typically the mobility shifts, which occur during sensing are correlated with trapping for polar analytes. The magnitude of the mobility decreases are dependent on the dipole moment of the polar analyte. Another aspect of organic materials is the fine-tuning of the chemical sensitivity by modifying the surface with receptor sites to increase the partition coefficient. In our study we pull the polarization, molecular dipole moment, transport and trapping, and partition coefficient concepts together to produce a model, which describes how an OFET based sensor interacts with an analyte with and without receptor molecules and under aqueous conditions. / text
512

Deposition of epitaxial Si/Si-Ge/Ge and novel high-K gate dielectrics using remote plasma chemical vapor deposition

Chen, Xiao, 1972- 29 June 2011 (has links)
Not available / text
513

A Quantified Approach to Tomato Plant Growth Status for Greenhouse Production in a Semi Arid Climate

Renda da Costa, Paula MR January 2007 (has links)
Balancing plant growth between vegetative and reproductive status is crucial for producing high quality greenhouse tomatoes while maintaining high productivity in long crop production seasons. In the tomato industry, certain plant morphological characteristics are used to classify plant growth status as vegetative, reproductive or balanced. Each growth status has been associated with distinct greenhouse environments which reduce or enhance transpiration.The effect of different transpiration on vegetative, reproductive or balanced plant growth status as defined by a set of plant morphological characteristics was investigated. To validate the practical significance of such classification, growth status was quantified as the relationship between variations in morphological characteristics and the fresh weight distributed between reproductive and vegetative organs.Two electrical conductivity (EC) levels of the nutrient solution, high and standard EC, were combined with two potential transpiration environments, low and high potential transpiration. All treatment combinations were contrasted with a reference greenhouse environment similar to the industry standard.Electrical conductivity had the greatest effect on morphological characteristics which were reduced in size with high EC. For each EC level, the response decreased for increasing potential transpiration. Stem diameter had the greatest sensitivity to the different treatment combinations. For the standard EC and for the range of potential transpirations achieved, stem diameter varied within a relatively narrow range, close to the industry standard 'threshold' used to classify a balanced tomato plant. A reproductive plant growth status, as evaluated by a smaller value than this threshold, was observed only with high EC. No vegetative plants were produced within any potential transpiration or EC treatment combination.High EC decreased the cumulative total fresh weight production by the same magnitude for all potential transpirations. Potential transpiration had a minimal effect on the total fresh weight production or on its components. As a result, the fresh weight ratio between reproductive and vegetative plant organs was similar for most potential transpiration environments, regardless of variations in stem diameter. Therefore, within the range of potential transpiration environments achieved, the distinction between vegetative and reproductive growth status as an indicator of fresh weight distribution and fruit yields could not be quantitatively validated.
514

Theoretical Routes for c-BN Thin Film Growth

Karlsson, Johan January 2013 (has links)
Cubic boron nitride (c-BN) has been in focus for several years due to its interesting properties. The possibility for large area chemical vapor deposition (CVD) is a requirement for the realization of these different properties in various applications. Unfortunately, there are at present severe problems in the CVD growth of c-BN. The purpose with this research project has been to theoretically investigate, using density functional theory (DFT) calculations, the possibility for a layer-by-layer CVD growth of c-BN.  The results, in addition with experimental work by Zhang et al.57,  indicate that plasma-enhanced atomic layer deposition (PEALD), using a BF3-H2-NH3-F2 pulse cycle and a diamond substrate, is a promising method for deposition of c-BN films. The gaseous species will decompose in the plasma and form BFx, H, NHx, and F species (x = 0, 1, 2, 3). The H and F radicals will uphold the cubic structure by completely hydrogenate, or fluorinate, the growing surface. Surface radical sites will appear during the growth process as a result of atomic H, or F, abstraction reactions. However, introduction of energy (e.g., ionic bombardment) is probably necessary to promote removal of H from the surface. The addition of NHx growth species (x = 0, 1, 2) to the B radical sites, and BFx growth species (x = 0, 1, 2) to N radical sites, will then result in a continuous growth of c-BN.
515

Silicon Refining Through Chemical Vapor Deposition

LI, Mark Xiang 03 January 2011 (has links)
Currently the cost of solar grade silicon accounts for approximately one third of the total solar cell cost, therefore a new silicon refining process is being proposed with the goal of lowering the cost of producing solar grade silicon. In this new process, Si-Cu alloys were used as the silicon source. One to one molar ratio H2-HCl gas mixtures were used as transport agents to extract Si out from the Si-Cu alloy at about 300-700oC, with following reaction taking place: Si+3HCl(g)=HSiCl3(g)+H2(g) While at about 1000-1300oC, pure Si deposits onto a hot silicon rod according to: Si+3HCl(g)=HSiCl3(g)+H2(g) The role of the copper in the alloy was to trap impurities in the Si and catalyze the gas solid reaction. A study on determining the rate limiting step and impurity behavior was done. A possible silicon extraction reaction mechanism was also addressed.
516

Silicon Refining Through Chemical Vapor Deposition

LI, Mark Xiang 03 January 2011 (has links)
Currently the cost of solar grade silicon accounts for approximately one third of the total solar cell cost, therefore a new silicon refining process is being proposed with the goal of lowering the cost of producing solar grade silicon. In this new process, Si-Cu alloys were used as the silicon source. One to one molar ratio H2-HCl gas mixtures were used as transport agents to extract Si out from the Si-Cu alloy at about 300-700oC, with following reaction taking place: Si+3HCl(g)=HSiCl3(g)+H2(g) While at about 1000-1300oC, pure Si deposits onto a hot silicon rod according to: Si+3HCl(g)=HSiCl3(g)+H2(g) The role of the copper in the alloy was to trap impurities in the Si and catalyze the gas solid reaction. A study on determining the rate limiting step and impurity behavior was done. A possible silicon extraction reaction mechanism was also addressed.
517

Level set model of microstructure evolution in the chemical vapor infiltration process

Wang, Xuelei 12 1900 (has links)
No description available.
518

Microwave remote sensing of sulfuric acid vapor in the Venus atmosphere

Kolodner, Marc Alan 08 1900 (has links)
No description available.
519

Studies of diamond film formation

Newson, Pamela Lynn 12 1900 (has links)
No description available.
520

Synthetic, mechanistic, structural, and dynamic NMR investigations of zinc bis(amide) compounds

Gaul, David Allen 05 1900 (has links)
No description available.

Page generated in 0.0413 seconds