• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Quantified Approach to Tomato Plant Growth Status for Greenhouse Production in a Semi Arid Climate

Renda da Costa, Paula MR January 2007 (has links)
Balancing plant growth between vegetative and reproductive status is crucial for producing high quality greenhouse tomatoes while maintaining high productivity in long crop production seasons. In the tomato industry, certain plant morphological characteristics are used to classify plant growth status as vegetative, reproductive or balanced. Each growth status has been associated with distinct greenhouse environments which reduce or enhance transpiration.The effect of different transpiration on vegetative, reproductive or balanced plant growth status as defined by a set of plant morphological characteristics was investigated. To validate the practical significance of such classification, growth status was quantified as the relationship between variations in morphological characteristics and the fresh weight distributed between reproductive and vegetative organs.Two electrical conductivity (EC) levels of the nutrient solution, high and standard EC, were combined with two potential transpiration environments, low and high potential transpiration. All treatment combinations were contrasted with a reference greenhouse environment similar to the industry standard.Electrical conductivity had the greatest effect on morphological characteristics which were reduced in size with high EC. For each EC level, the response decreased for increasing potential transpiration. Stem diameter had the greatest sensitivity to the different treatment combinations. For the standard EC and for the range of potential transpirations achieved, stem diameter varied within a relatively narrow range, close to the industry standard 'threshold' used to classify a balanced tomato plant. A reproductive plant growth status, as evaluated by a smaller value than this threshold, was observed only with high EC. No vegetative plants were produced within any potential transpiration or EC treatment combination.High EC decreased the cumulative total fresh weight production by the same magnitude for all potential transpirations. Potential transpiration had a minimal effect on the total fresh weight production or on its components. As a result, the fresh weight ratio between reproductive and vegetative plant organs was similar for most potential transpiration environments, regardless of variations in stem diameter. Therefore, within the range of potential transpiration environments achieved, the distinction between vegetative and reproductive growth status as an indicator of fresh weight distribution and fruit yields could not be quantitatively validated.
2

Latitudinal gradients in tree ring stable carbon and oxygen isotopes reveal differential climate influences of the North American Monsoon System

Szejner, Paul, Wright, William E., Babst, Flurin, Belmecheri, Soumaya, Trouet, Valerie, Leavitt, Steven W., Ehleringer, James R., Monson, Russell K. 07 1900 (has links)
The arrival of the North American Monsoon System (NAMS) terminates a presummer hyperarid period in the southwestern United States (U.S.), providing summer moisture that is favorable for forest growth. Montane forests in this region rely on winter snowpack to drive much of their growth; the extent to which they use NAMS moisture is uncertain. We addressed this by studying stable carbon and oxygen isotopes in earlywood and latewood from 11 sites along a latitudinal gradient extending from Arizona and New Mexico to Utah. This study provides the first regional perspective on the relative roles of winter versus summer precipitation as an ecophysiological resource. Here we present evidence that Ponderosa pine uses NAMS moisture differentially across this gradient. C-13/C-12 ratios suggest that photosynthetic water use efficiency during latewood formation is more sensitive to summer precipitation at the northern than at the southern sites. This is likely due to the fact that NAMS moisture provides sufficiently favorable conditions for tree photosynthesis and growth during most years in the southern sites, whereas the northern sites experience larger summer moisture variability, which in some years is limiting growth. Cellulose O-18 and C-13 values revealed that photoassimilates in the southern sites were produced under higher vapor pressure deficit conditions during spring compared to summer, demonstrating a previously underappreciated effect of seasonal differences in atmospheric humidity on tree ring isotope ratios. Our findings suggest that future changes in NAMS will potentially alter productivity and photosynthetic water use dynamics differentially along latitudinal gradients in southwestern U.S. montane forests.
3

Caracterização da capacidade fotossintética e da condutância estomática em sete clones comerciais de Eucalyptus e seus padrões de resposta ao déficit de pressão de vapor / Photosynthetic capacity and stomatal conductance characterization for seven commercial Eucalyptus clones and their variation due to vapor pressure deficit

Marrichi, Ana Heloisa Carnaval 30 March 2009 (has links)
O estudo caracterizou as variáveis fisiológicas da fotossíntese, em 7 clones de Eucalyptus de alta produtividade, determinando-se as capacidades fotossintéticas máximas (Amax), e o comportamento da fotossíntese (A), condutância (gs) e transpiração (E) em relação ao Déficit de Pressão de Vapor (DPV). Para isso, um ensaio foi instalado em 2004, na ESALQ/USP, contendo os clones do Projeto BEPP (Brasil Eucalyptus Produtividade Potencial), sendo cada parcela composta de 49 plantas (7x7) no espaçamento de 3,0m x 2,7m. Mediram-se as alturas ou DAPs e selecionaram-se 3 árvores médias para as mensurações fisiológicas, aos 16 e 36 meses. A amostragem para Amax foi composta de duas posições superiores da copa (2 e 3), dois galhos por posição e duas folhas por galho. As medições foram feitas das 8 às 10 horas (baixo DPV). Para o comportamento de A e gs frente ao DPV, as medições continuaram, de hora em hora, das 11 às 15 horas, nas folhas do primeiro galho da posição 2. Ao final as folhas foram coletadas para determinação da área foliar específica (AFE) e do nitrogênio (N). Aos 16 meses, foram feitas curvas A/Ci, para posterior cálculo de Vcmax (taxa máxima de carboxilação), Jmax (taxa máxima de transporte de elétrons) e VTPU (utilização da triose fosfato), pelo programa Photosyn Assistant. As curvas foram feitas em 2 árvores por clone, nas posições superiores e inferiores da copa. Todas mensurações foram realizadas com o aparelho LiCor-6400. Os resultados mostraram que Amax foi similar para as posições 2 e 3. Entre os clones, houve variação, porém não consistente entre idades, e todos mostraram altos valores de Amax na idade de 16 meses (entre 26 e 31, com média de 29 µmol m-2s-1), reduzindo-se aos 36 meses (entre 19 e 26, com média de 22 µmol m-2s-1). A AFE e o N também foram similares entre as posições 2 e 3 e maiores na idade mais jovem (11 versus 8 m²kg-1, 29 versus 21 gN kg-1), podendo estar associados à queda de Amax. A, gs e E também apresentaram menores valores aos 36 meses, para todos os clones (23 versus 18 µmol m-2s-1; 0,41 versus 0,26 mol m-2s-1; 9,2 versus 6,1 mmol m-2s-1). Os clones mostraram sensibilidade ao DPV, reduzindo os valores de gs e A ao longo do dia, sendo a sensibilidade menor aos 36 meses. As sensibilidades foram distintas, evidenciando potencial de seleção de materiais mais aptos a tolerarem estresse hídrico. Em geral, maiores valores de fotossíntese estão relacionados a maiores valores de transpiração, evidenciando a necessidade de se conhecer a disponibilidade hídrica local quando do uso de clones de alta produtividade. Vcmax, Jmax e VTPU foram maiores para as posições superiores da copa, e não diferiram entre os clones. Devido à semelhança fisiológica entre as posições 2 e 3, pode-se sugerir que não haja distinção entre elas em futuras medições de fotossíntese, essenciais para a parametrização de modelos. Não houve relação direta entre crescimento do tronco e fotossíntese, evidenciando a necessidade de integração com estudos relacionados à alocação do carbono dentro da planta. / This study aimed to characterize the physiological variables related to photosynthesis, in seven commercial Eucalyptus clones with high productivity, by evaluating maximum photosynthetic capacity (Amax), and the response of photosynthesis (A), stomatal conductance (gs) and transpiration (E) to Vapor Pressure Deficit (VPD). A trial was installed in 2004, at ESALQ/USP, with the clones that were part of BEPP Project (Brazil Eucalyptus Potential Productivity), and each plot had 49 plants (7x7) in a 3 m x 2.7m spacing. We measured tree height or DBHs and three average trees were selected for measurements, at 16 and 36 months. The sample to estimate Amax was: two crown positions (2 and 3), two branches per tree and two leaves per branch. The measurements which were taken from 8 to 10 am (low VPD). To get the response of A and gs to VPD measurements continued hourly, from 11 am to 3 pm, on the leaves from the first branch and position 2. At the end of the measurements leaves were collected for specific leaf area (SLA) and nitrogen (N) determination. Additionally, at 16 months, A/Ci curves were established, and parameters Vcmax, Jmax and VTPU were estimated through the program Photosyn Assistant. The curves were done for 2 trees per clone, at superior crown positions (2 and 3) and inferior ones (4 and 5). The physiological measurements and A/Ci curves were made using LiCor-6400. The results showed that Amax was similar for positions 2 and 3. There was variation among clones, but not consistent between ages, and all the clones had high Amax at 16 months (between 26 and 31 µmol m-2s-1, with an average of 29 µmol m-2s-1), decreasing at 36 months (between 19 and 26 µmol m-2s-1, with an average of 22 µmol m-2s-1). SLA and N were also similar between positions 2 and 3 and higher at younger age (11,1 versus 8,3 m²kg-1, 29,6 versus 21,1 gN kg-1;), what may be associate with Amax decrease. A, gs and E also showed lower values at age 36, for all the clones (23 versus 18 µmol m-2s-1; 0,41 versus 0,26 mol m-2s-1; 9,2 versus 6,1 mmol m-2s-1). All clones showed sensitivity to VPD, reducing gs and A with increasing VPD. However, the clones showed different sensitivities and all of them were less sensitive to VPD at age 36, highlighting a selection potential of genetic materials for water stress. In general, higher photosynthesis values were associated with higher transpiration, showing the necessity to know the water conditions of sites when planting genetic materials with high productivity. Vcmax, Jmax and VTPU were greater for superior positions compared to inferior ones, and were not different among clones. Due to a similarity in SLA, N and physiological and biochemical traits between positions 2 and 3, no distinction on future photosynthesis measurements between these positions is needed. Finally, there was not a direct relation between stem growth and photosynthesis, at both ages, showing that photosynthesis at crown level by itself can not capture all the ecophysiological processes related to wood productivity, being necessary the integration with studies related to carbon allocation inside the plant.
4

Caracterização da capacidade fotossintética e da condutância estomática em sete clones comerciais de Eucalyptus e seus padrões de resposta ao déficit de pressão de vapor / Photosynthetic capacity and stomatal conductance characterization for seven commercial Eucalyptus clones and their variation due to vapor pressure deficit

Ana Heloisa Carnaval Marrichi 30 March 2009 (has links)
O estudo caracterizou as variáveis fisiológicas da fotossíntese, em 7 clones de Eucalyptus de alta produtividade, determinando-se as capacidades fotossintéticas máximas (Amax), e o comportamento da fotossíntese (A), condutância (gs) e transpiração (E) em relação ao Déficit de Pressão de Vapor (DPV). Para isso, um ensaio foi instalado em 2004, na ESALQ/USP, contendo os clones do Projeto BEPP (Brasil Eucalyptus Produtividade Potencial), sendo cada parcela composta de 49 plantas (7x7) no espaçamento de 3,0m x 2,7m. Mediram-se as alturas ou DAPs e selecionaram-se 3 árvores médias para as mensurações fisiológicas, aos 16 e 36 meses. A amostragem para Amax foi composta de duas posições superiores da copa (2 e 3), dois galhos por posição e duas folhas por galho. As medições foram feitas das 8 às 10 horas (baixo DPV). Para o comportamento de A e gs frente ao DPV, as medições continuaram, de hora em hora, das 11 às 15 horas, nas folhas do primeiro galho da posição 2. Ao final as folhas foram coletadas para determinação da área foliar específica (AFE) e do nitrogênio (N). Aos 16 meses, foram feitas curvas A/Ci, para posterior cálculo de Vcmax (taxa máxima de carboxilação), Jmax (taxa máxima de transporte de elétrons) e VTPU (utilização da triose fosfato), pelo programa Photosyn Assistant. As curvas foram feitas em 2 árvores por clone, nas posições superiores e inferiores da copa. Todas mensurações foram realizadas com o aparelho LiCor-6400. Os resultados mostraram que Amax foi similar para as posições 2 e 3. Entre os clones, houve variação, porém não consistente entre idades, e todos mostraram altos valores de Amax na idade de 16 meses (entre 26 e 31, com média de 29 µmol m-2s-1), reduzindo-se aos 36 meses (entre 19 e 26, com média de 22 µmol m-2s-1). A AFE e o N também foram similares entre as posições 2 e 3 e maiores na idade mais jovem (11 versus 8 m²kg-1, 29 versus 21 gN kg-1), podendo estar associados à queda de Amax. A, gs e E também apresentaram menores valores aos 36 meses, para todos os clones (23 versus 18 µmol m-2s-1; 0,41 versus 0,26 mol m-2s-1; 9,2 versus 6,1 mmol m-2s-1). Os clones mostraram sensibilidade ao DPV, reduzindo os valores de gs e A ao longo do dia, sendo a sensibilidade menor aos 36 meses. As sensibilidades foram distintas, evidenciando potencial de seleção de materiais mais aptos a tolerarem estresse hídrico. Em geral, maiores valores de fotossíntese estão relacionados a maiores valores de transpiração, evidenciando a necessidade de se conhecer a disponibilidade hídrica local quando do uso de clones de alta produtividade. Vcmax, Jmax e VTPU foram maiores para as posições superiores da copa, e não diferiram entre os clones. Devido à semelhança fisiológica entre as posições 2 e 3, pode-se sugerir que não haja distinção entre elas em futuras medições de fotossíntese, essenciais para a parametrização de modelos. Não houve relação direta entre crescimento do tronco e fotossíntese, evidenciando a necessidade de integração com estudos relacionados à alocação do carbono dentro da planta. / This study aimed to characterize the physiological variables related to photosynthesis, in seven commercial Eucalyptus clones with high productivity, by evaluating maximum photosynthetic capacity (Amax), and the response of photosynthesis (A), stomatal conductance (gs) and transpiration (E) to Vapor Pressure Deficit (VPD). A trial was installed in 2004, at ESALQ/USP, with the clones that were part of BEPP Project (Brazil Eucalyptus Potential Productivity), and each plot had 49 plants (7x7) in a 3 m x 2.7m spacing. We measured tree height or DBHs and three average trees were selected for measurements, at 16 and 36 months. The sample to estimate Amax was: two crown positions (2 and 3), two branches per tree and two leaves per branch. The measurements which were taken from 8 to 10 am (low VPD). To get the response of A and gs to VPD measurements continued hourly, from 11 am to 3 pm, on the leaves from the first branch and position 2. At the end of the measurements leaves were collected for specific leaf area (SLA) and nitrogen (N) determination. Additionally, at 16 months, A/Ci curves were established, and parameters Vcmax, Jmax and VTPU were estimated through the program Photosyn Assistant. The curves were done for 2 trees per clone, at superior crown positions (2 and 3) and inferior ones (4 and 5). The physiological measurements and A/Ci curves were made using LiCor-6400. The results showed that Amax was similar for positions 2 and 3. There was variation among clones, but not consistent between ages, and all the clones had high Amax at 16 months (between 26 and 31 µmol m-2s-1, with an average of 29 µmol m-2s-1), decreasing at 36 months (between 19 and 26 µmol m-2s-1, with an average of 22 µmol m-2s-1). SLA and N were also similar between positions 2 and 3 and higher at younger age (11,1 versus 8,3 m²kg-1, 29,6 versus 21,1 gN kg-1;), what may be associate with Amax decrease. A, gs and E also showed lower values at age 36, for all the clones (23 versus 18 µmol m-2s-1; 0,41 versus 0,26 mol m-2s-1; 9,2 versus 6,1 mmol m-2s-1). All clones showed sensitivity to VPD, reducing gs and A with increasing VPD. However, the clones showed different sensitivities and all of them were less sensitive to VPD at age 36, highlighting a selection potential of genetic materials for water stress. In general, higher photosynthesis values were associated with higher transpiration, showing the necessity to know the water conditions of sites when planting genetic materials with high productivity. Vcmax, Jmax and VTPU were greater for superior positions compared to inferior ones, and were not different among clones. Due to a similarity in SLA, N and physiological and biochemical traits between positions 2 and 3, no distinction on future photosynthesis measurements between these positions is needed. Finally, there was not a direct relation between stem growth and photosynthesis, at both ages, showing that photosynthesis at crown level by itself can not capture all the ecophysiological processes related to wood productivity, being necessary the integration with studies related to carbon allocation inside the plant.
5

Does vapor pressure deficit drive the seasonality of δ 13C of the net land-atmosphere CO2 exchange across the United States?

Raczka, B., Biraud, S. C., Ehleringer, J. R., Lai, C.-T., Miller, J. B., Pataki, D. E., Saleska, S. R., Torn, M. S., Vaughn, B. H., Wehr, R., Bowling, D. R. 08 1900 (has links)
The seasonal pattern of the carbon isotope content (delta C-13) of atmospheric CO2 depends on local and nonlocal land-atmosphere exchange and atmospheric transport. Previous studies suggested that the delta C-13 of the net land-atmosphere CO2 flux (delta(source)) varies seasonally as stomatal conductance of plants responds to vapor pressure deficit of air (VPD). We studied the variation of (source) at seven sites across the United States representing forests, grasslands, and an urban center. Using a two-part mixing model, we calculated the seasonal delta(source) for each site after removing background influence and, when possible, removing delta C-13 variation of nonlocal sources. Compared to previous analyses, we found a reduced seasonal (March-September) variation in delta(source) at the forest sites (0.5 parts per thousand variation). We did not find a consistent seasonal relationship between VPD and delta(source) across forest (or other) sites, providing evidence that stomatal response to VPD was not the cause of the global, coherent seasonal pattern in (source). In contrast to the forest sites, grassland and urban sites had a larger seasonal variation in (source) (5) dominated by seasonal transitions in C-3/C-4 grass productivity and in fossil fuel emissions, respectively. Our findings were sensitive to the location used to account for atmospheric background variation within the mixing model method that determined (source). Special consideration should be given to background location depending on whether the intent is to understand site level dynamics or regional scale impacts of land-atmosphere exchange. The seasonal amplitude in delta C-13 of land-atmosphere CO2 exchange (delta(source)) varied across land cover types and was not driven by seasonal changes in vapor pressure deficit. The largest seasonal amplitudes of delta(source) were at grassland and urban sites, driven by changes in C-3/C-4 grass productivity and fossil fuel emissions, respectively. Mixing model approaches may incorrectly calculate delta(source) when background atmospheric observations are remote and/or prone to anthropogenic influence.
6

Variações diurnas da fotossíntese e efeitos do anelamento de ramos sobre a fotossíntese e o metabolismo do carbono em café arábica / Diurnal changes in photosynthesis and effects of branch girdling on photosynthesis and carbon metabolism in arabica coffee

Batista, Karine Dias 26 February 2008 (has links)
Made available in DSpace on 2015-03-26T13:36:36Z (GMT). No. of bitstreams: 1 texto completo.pdf: 520335 bytes, checksum: 133b7aafe14e6bfde015c5e172526a0e (MD5) Previous issue date: 2008-02-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This study was carried out in order to examine (i) the diurnal changes in photosynthesis rates under low atmospheric evaporative demand, and (ii) the relationship between the rate of net photosynthesis (A) and carbon (C) metabolism in experimentally-manipulated branches through girdling. Two experiments were separately conducted and so analyzed. In both experiments, plants of arabica coffee (Coffea arabica L.) were grown in 12-L pots during approximately eight months. Then, gas exchanges (measured using an infrared gas analyzer), the rate of uptake of 14CO2 and the partitioning of the recently fixed 14C through the major photosynthetic routes were analyzed; leaf material was also harvested for biochemical assays. In Experiment I, plants were grown in a greenhouse under semi-controlled conditions (diurnal values of vapor pressure deficit, VPD, ranging from 1.0 to 1.6 kPa). There was a decrease (20%) in A paralleling a reduction (35%) in stomatal conductance (gs) at 16:00 h as compared with the values of these traits obtained at 08:00 and 12:00 h. The narrow diurnal fluctuations in A were apparently coupled with the maintenance of low VPD throughout the day. Simple and canonical correlations evidenced a lack of feedback inhibition to photosynthesis, a fact further supported by the (i) lack of diurnal changes in carbohydrate and amino acid levels and (ii) unchanging rate of 14CO2 uptake and the partitioning of the recently fixed 14C during the day. In addition, the activity of ADP-glucose pyrophosphorylase and the initial and total activities of Rubisco (as well as its activation state) did not change during the day. In fact, diurnal variations in A were largely explained by diffusive limitations. In Experiment II, gas exchange was measured at 08:00 h during 11 days in girdled and non-girdled (control) branches. There was a remarkable decrease in A and especially in gs. In girdled branches, starch levels increased by 271% and 203%, respectively at the 4th and 10th days after applying the treatments. The hexose-to-amino acid ratio increased in girdled branches at the 10th day of girdling, but the concentrations of other soluble sugars and amino acids did no change in response to the treatments, as also did the activity of ADP-glucose pyrophosphorylase and the initial and total activities of Rubisco. Moreover, the potential photosynthetic capacity also remained unchanged after girdling, suggesting that changes in A were marginally affected, if so, by biochemical constraints to the photosynthetic machinery. As in Experiment I, changes in A were largely explained by diffusive limitations. In summary, it is proposed that diurnal oscillations in A during the day, as well as between leaves from girdled and non-girdled branches were merely a consequence from diffusive, rather than from biochemical, limitations to photosynthesis. / O presente estudo foi conduzido procurando-se analisar (i) as variações diurnas da fotossíntese numa condição de baixa demanda evaporativa e (ii) as relações entre A e o metabolismo do carbono em ramos experimentalmente manipulados, via anelamento. Foram conduzidos dois experimentos isoladamente e analisados como tal. Em ambos, plantas de café arábica (Coffea arabica L.) foram cultivadas em vasos de doze litros, por aproximadamente oito meses, quando, então, foram avaliadas as trocas gasosas (usando-se de um analisador de gases a infravermelho), a taxa de fixação de 14CO2 e a partição de [14C]-assimilados entre as principais rotas biossintéticas associadas à fotossíntese; adicionalmente, foi coletado material foliar para análises bioquímicas posteriores. No primeiro experimento, as plantas foram cultivadas em uma casa de vegetação sob condições semi-controladas, com valores diurnos do déficit de pressão de vapor (DPV) variando de 1,0 a 1,6 kPa. Houve uma redução (20%) da taxa de fotossíntese líquida (A) em paralelo a um decréscimo (35%) na condutância estomática (gs), às 16:00 h, em comparação com os valores dessas variáveis obtidos às 08:00 e 12:00 h. As pequenas flutuações diurnas de A parecem ter sido resultantes da manutenção artificial do DPV em níveis relativamente baixos. As correlações simples e canônicas sugeriram que não houve retroinibição da fotossíntese, fato suportado pela ausência de variações diurnas nas concentrações de carboidratos e aminoácidos e pela constância da taxa de absorção de 14CO2 e da partição de [14C]-assimilados, ao longo do dia. Em adição, não se observou aumento na atividade da AGPase, tampouco decréscimo nas atividades inicial e total e no estado de ativação da Rubisco ao final da tarde. Com efeito, as variações diurnas em A foram largamente explicáveis por limitações difusivas à fotossíntese. No segundo experimento, as trocas gasosas foram analisadas ao longo de onze dias após o anelamento dos ramos, às 08:00 h, observando-se um acentuado decréscimo em A e, principalmente, em gs. Nos ramos anelados, os teores de amido aumentaram 271% e 203%, respectivamente, no quarto e no décimo dias após o anelamento, enquanto a razão hexoses:aminoácidos aumentou no décimo dia após a implantação dos tratamentos, em relação aos ramos-controle. Os teores dos demais carboidratos e dos aminoácidos mantiveram-se inalterados. As atividades inicial e total e o estado de ativação da Rubisco, bem como a atividade da AGPase, não foram alteradas com o anelamento. Adicionalmente, a capacidade fotossintética potencial não variou, em resposta ao anelamento, provendo, por conseguinte, forte evidência de que as variações em A foram pouco afetadas por limitações bioquímicas à maquinaria fotossintética. Os decréscimos em A foram explicados principalmente por alterações em gs e não por alterações no metabolismo do carbono, conforme sugere a análise de correlações canônicas. Conclui-se, pois, que as variações nas trocas gasosas ao longo do dia, bem como as variações entre folhas de ramos anelados e não anelados, em café, foram decorrentes meramente de limitações difusivas, e não de possíveis alterações no metabolismo do carbono.
7

<b>CHARACTERIZING ENVIRONMENTAL EFFECTS ON THE WATER STATUS OF CUTTINGS ACCLIMATED INDOORS</b>

Ana Sofia Gomez (19837308) 11 October 2024 (has links)
<p dir="ltr">Vertical indoor propagation (VIP) systems that use <a href="" target="_blank">sole-source lighting and temperature, relative humidity (RH), and carbon dioxide (CO<sub>2</sub>) control are increasingly being used by young-plant growers to start </a>unrooted cuttings (URC) indoors for greenhouse finishing. However, optimal environmental setpoints for VIP systems are unknown. Providing an environment that limits water loss by URC prior to root initiation is particularly critical for VIP systems. Thus, understanding the isolated and combined effects of different environmental factors on the water status of URC will help ensure the rooting success and growth of high-quality liners. In chapter 1, we characterized the effect of blue light and CO₂ concentration on the water status of <i>Chrysanthemum</i> and <i>Begonia</i> cuttings, as both factors are known to affect stomatal behavior of plants. The first experiment evaluated short-term effects of blue light (15% to 60% blue light) on water status and physiological responses by URC. This was followed by a second experiment that evaluated short-term effects on water use (water loss, water uptake) and long-term effects on evapotranspiration, physiological responses, and growth of cuttings under two blue-light treatments (21% or 45% blue light) and two CO<sub>2</sub> concentrations (ambient or high at ~500 or 1200 μmol·mol<sup>–1</sup>, respectively). In the first experiment, increasing blue light increased short-term water use but did not affect stomatal conductance (<i>g</i><sub><em>s</em></sub>) and transpiration (<i>E</i>), likely due to limitations in stomatal control by URC. Results from the second experiment showed there were few differences in shoot growth and root development in response to blue light at the two CO<sub>2</sub> concentrations applied during indoor acclimation and subsequent greenhouse finishing phases, suggesting that growth of cuttings is more responsive to environmental stimuli after root initiation. When significant, growth responses were species-specific, likely attributed to morphological and anatomical differences. The only effect in long-term evapotranspiration was measured in begonia under high CO<sub>2</sub>, which indicated that cuttings under 45% blue light had the highest water loss. This result corresponds with the general findings for <i>g</i><sub><em>s</em></sub> and <i>E</i>. In chapter 2, we evaluated the combined effect of photosynthetic photon flux density (PPFD) (0 to 210 µmol·m<sup>–2</sup>·s<sup>–1</sup>) and vapor pressure deficit of the air (VPD<sub>air</sub>) (0.00 to 0.76 kPa) on various environmental factors and on the short-term water status of cuttings, as are both major drivers of water loss. <a href="" target="_blank">Results showed that PPFD was weakly correlated with both VPD<sub>air</sub> and VPDl<sub>eaf</sub>, indicating that PPFD had a minimal heating effect on the air and leaves. Furthermore, results evaluating the relationship of both VPD<sub>air</sub> and VPD<sub>leaf</sub> for predicting the different water status variables showed similar responses, suggesting that measurements of leaf temperature would not be critical for irrigation control in VIP systems, where PPFD is typically relatively low and environmental conditions tend to be constant.</a> In general, the water status of begonia was minimally affected by PPFD and VPD<sub>air,</sub> but water status of chrysanthemum was responsive to both variables. For chrysanthemum URC, water loss and water uptake tended to increase in response to increasing PPFD, but there was no response to PPFD in <i>g</i><sub><em>s</em></sub>, <i>E</i>, evapotranspiration, and relative water content (RWC). For rooted cuttings (RC), however, <i>g</i><sub><em>s</em></sub> and <i>E</i> followed a linear increasing response to increasing PPFD, suggesting they were able to regulate transpirational losses through water uptake from the substrate. Increasing VPD<sub>air</sub> linearly increased the rate of water loss, water uptake, and evapotranspiration by chrysanthemum URC and RC, which in turn reduced RWC, whereas the leaf-air temperature difference linearly decreased in response to increasing VPD<sub>air</sub>, likely attributed to an increase in evaporative cooling under less saturated conditions. Overall, results from our studies provide baseline information on how different environmental conditions in VIP systems affect water status by cuttings from two ornamental herbaceous species.</p>
8

Determining and Comparing Hydraulic Behavior among Trees with Differing Wood Types in a Temperate Deciduous Forest

Bryant, Kelsey N. 25 May 2021 (has links)
No description available.

Page generated in 0.0733 seconds