Spelling suggestions: "subject:"vektorautoregression"" "subject:"vectorautoregression""
1 |
Forecasting daily maximum temperature of Umeånaz, saima January 2015 (has links)
The aim of this study is to get some approach which can help in improving the predictions of daily temperature of Umeå. Weather forecasts are available through various sources nowadays. There are various software and methods available for time series forecasting. Our aim is to investigate the daily maximum temperatures of Umeå, and compare the performance of some methods in forecasting these temperatures. Here we analyse the data of daily maximum temperatures and find the predictions for some local period using methods of autoregressive integrated moving average (ARIMA), exponential smoothing (ETS), and cubic splines. The forecast package in R is used for this purpose and automatic forecasting methods available in the package are applied for modelling with ARIMA, ETS, and cubic splines. The thesis begins with some initial modelling on univariate time series of daily maximum temperatures. The data of daily maximum temperatures of Umeå from 2008 to 2013 are used to compare the methods using various lengths of training period. On the basis of accuracy measures we try to choose the best method. Keeping in mind the fact that there are various factors which can cause the variability in daily temperature, we try to improve the forecasts in the next part of thesis by using multivariate time series forecasting method on the time series of maximum temperatures together with some other variables. Vector auto regressive (VAR) model from the vars package in R is used to analyse the multivariate time series. Results: ARIMA is selected as the best method in comparison with ETS and cubic smoothing splines to forecast one-step-ahead daily maximum temperature of Umeå, with the training period of one year. It is observed that ARIMA also provides better forecasts of daily temperatures for the next two or three days. On the basis of this study, VAR (for multivariate time series) does not help to improve the forecasts significantly. The proposed ARIMA with one year training period is compatible with the forecasts of daily maximum temperature of Umeå obtained from Swedish Meteorological and Hydrological Institute (SMHI).
|
2 |
Matching DSGE models to data with applications to fiscal and robust monetary policyKriwoluzky, Alexander 01 December 2009 (has links)
Diese Doktorarbeit untersucht drei Fragestellungen. Erstens, wie die Wirkung von plötzlichen Änderungen exogener Faktoren auf endogene Variablen empirisch im Allgemeinen zu bestimmen ist. Zweitens, welche Effekte eine Erhöhung der Staatsausgaben im Speziellen hat. Drittens, wie optimale Geldpolitik bestimmt werden kann, wenn der Entscheider keine eindeutigen Modelle für die ökonomischen Rahmenbedingungen hat. Im ersten Kapitel entwickele ich eine Methode, mithilfe derer die Effekte von plötzlichen Änderungen exogener Faktoren auf endogene Variablen geschätzt werden können. Dazu wird die gemeinsame Verteilung von Parametern einer Vektor Autoregression (VAR) und eines stochastischen allgemeinen Gleichgewichtsmodelles (DSGE) bestimmt. Auf diese Weise können zentrale Probleme gelöst werden: das Identifikationsproblem der VAR und eine mögliche Misspezifikation des DSGE Modells. Im zweitem Kapitel wende ich die Methode aus dem ersten Kapitel an, um den Effekt einer angekündigten Erhöhung der Staatsausgaben auf den privaten Konsum und die Reallöhne zu untersuchen. Die Identifikation beruht auf der Einsicht, dass endogene Variablen, oft qualitative Unterschiede in der Periode der Ankündigung und nach der Realisation zeigen. Die Ergebnisse zeigen, dass der private Konsum negativ im Zeitraum der Ankündigung reagiert und positiv nach der Realisation. Reallöhne steigen zum Zeitpunkt der Ankündigung und sind positiv für zwei Perioden nach der Realisation. Im abschließendem Kapitel untersuche ich gemeinsam mit Christian Stoltenberg, wie Geldpolitik gesteuert werden sollte, wenn die Modellierung der Ökonomie unsicher ist. Wenn ein Modell um einen Parameter erweitert wird, kann das Modell dadurch so verändert werden, dass sich die Politikempfehlungen zwischen dem ursprünglichen und dem neuen Modell unterscheiden. Oft wird aber lediglich das erweiterte Modell betrachtet. Wir schlagen eine Methode vor, die beiden Modellen Rechnung trägt und somit zu einer besseren Politik führt. / This thesis is concerned with three questions: first, how can the effects macroeconomic policy has on the economy in general be estimated? Second, what are the effects of a pre-announced increase in government expenditures? Third, how should monetary policy be conducted, if the policymaker faces uncertainty about the economic environment. In the first chapter I suggest to estimate the effects of an exogenous disturbance on the economy by considering the parameter distributions of a Vector Autoregression (VAR) model and a Dynamic Stochastic General Equilibrium (DSGE) model jointly. This allows to resolve the major issue a researcher has to deal with when working with a VAR model and a DSGE model: the identification of the VAR model and the potential misspecification of the DSGE model. The second chapter applies the methodology presented in the preceding chapter to investigate the effects of a pre-announced change in government expenditure on private consumption and real wages. The shock is identified by exploiting its pre-announced nature, i.e. different signs of the responses in endogenous variables during the announcement and after the realization of the shock. Private consumption is found to respond negatively during the announcement period and positively after the realization. The reaction of real wages is positive on impact and positive for two quarters after the realization. In the last chapter ''Optimal Policy Under Model Uncertainty: A Structural-Bayesian Estimation Approach'' I investigate jointly with Christian Stoltenberg how policy should optimally be conducted when the policymaker is faced with uncertainty about the economic environment. The standard procedure is to specify a prior over the parameter space ignoring the status of some sub-models. We propose a procedure that ensures that the specified set of sub-models is not discarded too easily. We find that optimal policy based on our procedure leads to welfare gains compared to the standard practice.
|
3 |
Statistisk undersökning av valutakurser : En jämförelse mellan olika prognosmodeller / Statistical Research of Exchange Rates : Comparison between Different Forecasting ModelsMozayyan, Sina January 2017 (has links)
Valutamarknaden är världens största marknad och en nödvändig del av dagens globala samhälle, som gör det möjligt för företag att göra affärer i olika valutor och mellan olika gränser. Marknaden utgör en stor handelsplattform för både små och stora aktörer, för vilka det är viktigt att prognostisera valutakurser med gott resultat. Att modellera finansiella instrument i form av tidsserier är en av de vanligaste investeringsstrategierna och dess användningsområde sträcker sig från valutamarknaden till bland annat aktiemarknaden och råvarumarknaden. I denna uppsats undersöks fyra olika statistiska metoder för att modellera valutakursen Euro-US Dollar givet historisk data, och prognoser görs med de framtagna modellerna. Dessa metoder är slumpvandring, ARIMA, ARIMA-GARCH och VAR. Vidare undersöks för den dynamiska VAR-modellen hur valutamarkanden påverkar, och blir påverkad av, långa och korta räntan. Resultaten visar att ARIMA(3,1,2) förklarar valutakursen bäst medan VAR(2) med valutakursen och skillnaden mellan långa räntor som ingående variabler ger de bästa prediktionerna. / The foreign exchange market is the world’s largest market and is an essential part of the global society of today. The FX market enables companies to trade with different currencies across country borders. It is also a large trade-platform for both big and small financial actors, who greatly benefit from the advantages of good predictions. Modeling of financial instruments is one of the most commonly used investment strategies and its area of application ranges from the FX market to markets suchas the stock market and the commodity market. In this paper, four different statistical models are used to model the currency pair Euro-US Dollar. These methods are random walk, ARIMA, ARIMA-GARCH and VAR. Besides investigating which method that gives the best forecasts, the method that best describes the training datais also found. Furthermore, for the dynamic VAR model, it is explored how the FX market affects, and is affected by, the long term and short term interest. The results show that ARIMA(3,1,2) is the best at describing the exchange rate while VAR(2) with the exchange rate and the difference between long term interests as variables gives the best predictions.
|
4 |
Multiple Time Series Analysis of Freight Rate Indices / Multipel tidsserieanalys av fraktratsindexKoller, Simon January 2020 (has links)
In this master thesis multiple time series of shipping industry and financial data are analysed in order to create a forecasting model to forecast freight rate indices. The data of main interest which are predicted are the two freight rate indices, BDI and BDTI, from the Baltic Exchange. The project investigates the possibilities for aggregated Vector Autoregression(VAR) models to outperform simple univariate models, in this case, an Autoregressive Integrated Moving Average(ARIMA) with seasonal components. The other part of this thesis is to model market shocks in the freight rate indices, given impulses in the other underlying VAR-model time series using the impulse response function. The main results are that the VAR-model forecast outperforms the ARIMA-model in forecasting the tanker freight rate index (BDTI), while the the bulk freight rate index(BDI) is better predicted by the simple ARIMA when calculating the forecast mean square error. / I denna avhandling analyseras multipla tidsserier över rederinärings- och finansiell data i syfte att skapa en prognosticerande modell för att prognosticera fraktratsindex. Dataserierna som i huvudsak prognosticeras är fraktratsindexen BDI och BDTI från Baltic exchange. I projektet undersöks om en aggregerad Vektor Autoregressiv(VAR) modell överträffar en univariat modell, i detta fall en Autoregressive Integrated Moving Average(ARIMA) med säsongsvariabel. I andra delen av denna avhandling modelleras chocker i fraktratsindexen givet impulser i de andra underliggande tidsserierna i de aggregerade VAR-modellerna. Huvudresultaten är att VAR-modellens prognos överträffar ARIMA-modellen för tankerraterna (BDTI), medan bulkraterna(BDI) bättre prognosticeras av ARIMA-modellen, i avseende på prognosernas beräknade mean square error.
|
Page generated in 0.0611 seconds