• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 100
  • 99
  • 79
  • 15
  • 15
  • 14
  • 12
  • 12
  • 12
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

An automated scanning laser doppler system for vibration measurements and wave-vector analysis of vibration of shells

Kil, Hyun-Gwon 08 1900 (has links)
No description available.
52

Development and analysis of a multiple beam laser system for measurement of surface vibrations

Yang, Ming 05 1900 (has links)
No description available.
53

Jet to jet impingement in a confined space /

Tyagi, Ashok K. January 1997 (has links)
Thesis (Ph.D.) -- McMaster University, 1997. / Includes bibliographical references (p. 234-241). Also available via World Wide Web.
54

Three-dimensional laminar and turbulent convection in separated flow

Thiruvengadam, Magesh, January 2008 (has links) (PDF)
Thesis (Ph. D.)--Missouri University of Science and Technology, 2008. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed August 21, 2008) Includes bibliographical references.
55

Laser doppler flowmetry and imaging methodological studies /

Bornmyr, Siv. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Added t.p. with thesis statement inserted. Includes bibliographical references.
56

Laser doppler flowmetry and imaging methodological studies /

Bornmyr, Siv. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Added t.p. with thesis statement inserted. Includes bibliographical references.
57

Measurement of fiber suspension flow and forming jet velocity profile by pulsed ultrasonic doppler velocimetry.

Xu, Hanjiang. January 2003 (has links)
Thesis (Ph. D.)--Institute of Paper Science and Technology, Georgia Institute of Technology, 2003.
58

Experimental Studies of Vertical Mixing Patterns in Open Channel Flow Generated by Two Delta Wings Side-by-Side

Vaughan, Garrett 01 May 2013 (has links)
Open channel raceway bioreactors are a low-cost system used to grow algae for biofuel production. Microalgae have many promises when it comes to renewable energy applications, but many economic hurdles must be overcome to achieve an economic fuel source that is competitive with petroleum-based fuels. One way to make algae more competitive is to improve vertical mixing in algae raceway bioreactors. Previous studies show that mixing may be increased by the addition of mechanisms such as airfoils. The circulation created helps move the algae from the bottom to top surface for necessary photosynthetic exchange. This improvement in light utilization allowed a certain study to achieve 2.2-2.4 times the amount of biomass relative to bioreactors without airfoils. This idea of increasing mixing in open channel raceways has been the focus of the Utah State University (USU) raceway hydraulics group. Computational Fluid Dynamics (CFD), Acoustic Doppler Velocimetry (ADV), and Particle Image Velocimetry (PIV) are all methods used at USU to computationally and experimentally quantify mixing in an open channel raceway. They have also been used to observe the effects of using delta wings (DW) in increasing vertical mixing in the raceway. These efforts showed great potential in the DW in increasing vertical mixing in the open channel bioreactor. However, this research begged the question, does the DW help increase algae growth? Three algae growth experiments comparing growth in a raceway with and without DW were completed. These experiments were successful, yielding an average 27.1% increase in the biomass. The DW appears to be a promising method of increasing algae biomass production. The next important step was to quantify vertical mixing and understand flow patterns due to two DWs side-by-side. Raceway channels are wider as they increase in size; and arrays of DWs will need to be installed to achieve quality mixing throughout the bioreactor. Quality mixing was attained for several paddle wheel (PW) speeds. Also, an optimal spacing between the DWs in an array was found to be the width of the DW. This optimal spacing allows for the best increase in vertical mixing along the width of the channel. Dimensional analysis was performed using experimental data to estimate vertical mixing index (VMI) results for data obtained by larger scale DW experiments. This rough analysis showed that the VMI may be estimated from small to large scale within 26.6% and 26.5% when equating Reynolds and Froude numbers, respectively. These results suggest that quality mixing would still be present at a larger DW scale.
59

Experimental studies of transonic airfoil trailing edge and wake flowfield properties /

Emmer, Deems Shelton January 1984 (has links)
No description available.
60

Laser doppler anemometer measurements of Reynolds stresses in a fully developed pipe flow

Doty, Mark C. 30 March 2010 (has links)
A laser Doppler Anemometer (LDA) is used to make Reynolds stress measurements in a fully developed, turbulent pipe flow. Traverses are made to measure shear stress, normal stresses, and the correlation coefficient. To assess the accuracy of this system, these measurements are compared with results from other published investigations. The differences between the published reports are discussed to emphasize how much turbulence measurements can vary, even in a well-studied flow. Descriptions are included about LDA theory and turbulence measurement techniques. The techniques discussed include the selection of proper sampling rate, the reduction of statistical bias, the choice of amplification, and optimization practices. / Master of Science

Page generated in 0.0401 seconds