1 |
Kraftanalys och framtagning av mätanordning för vertikala vindkraftverket Lucias bärarmarHammar, Henning, Constanda, Daniel January 2011 (has links)
The project contains a force analysis of the vertical axis wind turbine Lucia's supporting arms and a measuring device to experimentally measure the forces is made. The forces between the supporting arms and the tower are calculated theoretically and then simulated by a computere. A measuring devise is then designed to measure the forces experimentally. The forces acting on the attachment between the supporting arms and the tower is primarily the centripetal force, gravitational force and the aerodynamic forces on the rotor wings. The maximum forces were theoretically calculated and is 13.38 kN along the x-axis, -0.25 kN along the y-axis and then 0.5 kN along the z-axis. The axis are acording to a rotational reference system where the x-axis runs along the supporting arm and the y-axis runs along the axis of rotation. The maximum torque that occurs is 0.53 kNm along the y-axis and 1.29 kNm along the z-axis. The size of the forces have been confirmed with a deviation of up to 1.8 % in the simulation using SolidWorks 2010. For the experimental measurements a measuring device has been developed which consists of S-load cells with wave indicator and transmitter, an attachment for the measuring equipment and distanceplates to stabilize the rotor. S-load cells, wave indicator and transmitter were ordered and drawings for the attachment of the measuring equipment and spacer plates was done. The eigenfrequencies and the stress have been investigated for the parts. The eigenfrequencies for the wind turbine was estimated to decline up to 13 % when the measuring device was mounted and the lowest Factor of Safety was 1.67. Before the attachment of the measuring device and the spacer plates can be ordered the attachment of the supporting arms, how the loadcells should be attached to the device and the safety margins need to be examined.
|
2 |
Modeling of Small-Scale Wind Energy Conversion SystemsBuehrle, Bridget Erin 30 May 2013 (has links)
As wind turbines are increasingly being adopted for meeting growing energy needs, their implementation for personal home use in the near future is imminent. There are very few studies conducted on small-scale turbines in the one to two meter diameter range because the power generated at this scale is currently not sufficient to justify the cost of installation and maintenance. The problem is further complicated by the fact that these turbines are normally mounted at low altitudes and thus there is necessity to have the optimum operating regime in the wind speed range of 3-10 mph (1.34 -- 4.47 m/s). This thesis discusses two methods for increasing the efficiency of horizontal axis small-scale wind energy conversion systems, 1) adding a diffuser to increase the wind speed at the rotor and 2) designing tubercles to enhance the flow characteristics over blades. Further, it was identified during the course of thesis that for simple installation and maintenance in the residential areas vertical axis turbines are advantageous. Thus, the second chapter of this thesis addresses the design of vertical axis turbines with power generation capability suitable for that of a typical US household.
The study of the diffuser augmented wind turbine provides optimum dimensions for achieving high power density that can address the challenges associated with small scale wind energy systems; these challenges are to achieve a lower start-up speed and low wind speed operation. The diffuser design was modeled using commercial computational fluid dynamics code. Two-dimensional modeling using actuator disk theory was used to optimize the diffuser design. A statistical study was then conducted to reduce the computational time by selecting a descriptive set of models to simulate and characterize relevant parameters' effects instead of checking all the possible combinations of input parameters. Individual dimensions were incorporated into JMP® software and randomized to design the experiment. The results of the JMP® analysis are discussed in this paper. Consistent with the literature, a long outlet section with length one to three times the diameter coupled with a sharp angled inlet was found to provide the highest amplification for a wind turbine diffuser.
The second study consisted of analyzing the capabilities of a small-scale vertical axis wind turbine. The turbine consisted of six blades of extruded aluminum NACA 0018 airfoils of 0.08732 m (3.44 in) in chord length. Small-scale wind turbines often operate at Reynolds numbers less than 200,000, and issues in modeling their flow characteristics are discussed throughout this thesis. After finding an appropriate modeling technique, it was found that the vertical axis wind turbine requires more accurate turbulence models to appropriately discover its performance capabilities.
The use of tubercles on aerodynamic blades has been found to delay stall angle and increase the aerodynamic efficiency. Models of 440 mm (17.33 in) blades with and without tubercles were fabricated in Virginia Tech's Center for Energy Harvesting Materials and Systems (CEHMS) laboratory. Comparative analysis using three dimensional models of the blades with and without the tubercles will be required to determine whether the tubercle technology does, in fact, delays the stall. Further computational and experimental testing is necessary, but preliminary results indicate a 2% increase in power coefficient when tubercles are present on the blades. / Master of Science
|
3 |
Age-differences in the free vertical moment during step descentBuckley, John, Jones, Stephen F., Johnson, Louise 20 October 2009 (has links)
No / This study utilises a rarely examined biomechanical parameter – the free vertical moment to
determine age-related differences in rotational kinetics of the body about the vertical-axis when stepping
down from a stationary position.
Ten older and 10 young adults completed step-downs from three heights. Free vertical moment
impulse and peak during step-initiation double-support and the subsequent step-execution phase, and
vertical-axis pelvis angular displacement and velocity at instant of landing were compared.
The free vertical moment during double-support was directed away from the intended leadlimb
side, producing a change in vertical-axis rotational momentum that moved the lead-limb in a forwards-
medial direction about the stationary support/trailing limb during the subsequent step-execution
phase. The free vertical moment during step-execution was directed towards the lead-limb side and
acted to slow/halt the body’s vertical-axis rotation away from lead-limb side. Free vertical moment
impulse and peak during double-support were similar between groups (P > 0.05), but during step-execution
were significantly reduced in older adults (P = 0.002). As a result older adults had greater verticalaxis
pelvis angular displacement and velocity at instant of landing (directed away from lead-limb side),
with significant (P < 0.001) group-by-step height interactions indicating that differences between groups
became more pronounced with increasing step-height.
These findings highlight that older adults were unable to exert the same vertical-axis control
during single-support as young subjects did. Findings also highlight that the analysis of free vertical
moment data can be a useful biomechanical tool to highlight age-related differences in how steps/stairs
are negotiated.
|
4 |
LQG-control of a Vertical Axis Wind Turbine with Focus on Torsional VibrationsAlverbäck, Adam January 2012 (has links)
In this thesis it has been investigated if LQG control could be used to mitigate torsional oscillations in a variable speed, fixed pitch wind turbine. The wind turbine is a vertical axis wind turbine with a 40 m tall axis that is connected to a generator. The power extracted by the turbine is delivered to the grid via a passive rectifier and an inverter. By controlling the grid side inverter the current is controlled and hence the rotational speed can be controlled. A state space model was developed for the LQG controller. The model includes both the dynamics of the electrical system as swell as the two mass system, consisting of the turbine and the generator connected with a flexible shaft. The controller was designed to minimize a quadratic criterion that punishes both torsional oscillations, command following and input signal magnitude. Integral action was added to the controller to handle the nonlinear aerodynamic torque. The controller was compared to the existing control system that uses a PI controller to control the speed, and tested usingMATLAB Simulink. Simulations show that the LQG controller is just as good as the PI controller in controlling the speed of the turbine, and has the advantage that it can be tuned such that the occurrence of torsional oscillations is mitigated. The study also concluded that some external method of dampening torsional oscillations should be implemented to mitigate torsional oscillations in case of a grid fault or loss of PWM signal.
|
5 |
Experimental Results of a Load-Controlled Vertical Axis Marine Current Energy ConverterForslund, Johan January 2015 (has links)
This thesis investigates the load control of a marine current energy converter using a vertical axis turbine mounted on a permanent magnet synchronous generator. The purpose of this thesis is to show the work done in the so far relatively uncharted territory of control systems for hydro kinetic energy conversion. The work is in its early stage and is meant to serve as a guide forfuture development of the control system. An experimental power station has been deployed and the first results are presented. A comparison between three load control methods has been made; a fixedAC load, a fixed pulse width modulated DC load and a DC bus voltage control of a DC load. Experimental results show that the DC bus voltage control reduces the variation of rotational speed with a factor of 3.5. For all three cases, the tip speed ratio of the turbine can be kept close to the expected optimal tip speed ratio. However, for all three cases the average extracted power was significantly lower than the average power available in the turbine times the estimated maximum power coefficient. A maximum power point tracking system, with or without water velocity measurement, should increase the average extracted power. A simulation model has been validated using experimental data. The simulated system consists of the electrical system and a hydrodynamic vortex model for the turbine. Experiments of no load operation were conducted to calibrate the drag losses of the turbine. Simulations were able to predict the behaviour in a step response for a change in tip speed ratio when the turbine was operated close to optimal tip speed ratio. The start position of the turbine was varied in the simulation to view the influence on the step response from a changed turbine position relative to the direction of the water flow. / <p>Funders: J Gust Richert, Bixia Miljöfond</p>
|
6 |
A NUMERICAL STUDY ON THE FLOW DIVERGENCE AROUND A HIGH SOLIDITY VERTICAL AXIS WIND TURBINEMisner, Greg January 2019 (has links)
This thesis reports on a numerical investigation into the three-dimensional flow divergence around a high solidity vertical axis wind turbine. Three-dimensional unsteady Reynolds averaged Navier-Stokes simulations of an H-type vertical axis wind turbine were used to examine the impact of turbine aspect ratio and tip speed ratio on the flow divergence. The turbine height was changed to alter the turbine aspect ratio, while keeping the diameter constant, to ensure that the solidity and tip speed ratio values were comparable between the different aspect ratios tested.
The power output of the turbine consistently increased with aspect ratio and the optimal tip speed ratio for peak performance was negligibly affected. The flow divergence results showed that larger aspect ratio turbines had significantly more flow divergence with a 1 m/s entrance velocity difference between the smallest and largest cases. These two results where contradictory as a larger aspect ratio turbine was more efficient even though it had a smaller fraction of the upstream flow entering the upwind pass. The reason for this result was that impact of the tip effects, which caused a power reduction near the end of the blades. The distance from the blade tips that experienced a power reduction was constant for turbines of aspect ratio one and greater, resulting in a smaller turbine having a greater fraction of its height effected by the tips. This caused the overall power output for a smaller aspect ratio turbine to be lower even though its centre performance was higher, due to an increased entrance velocity.
The change in flow divergence with tip speed ratio was also examined to better understand the driving force behind the divergence. It was found that the turbine power output was not the direct cause of flow divergence. The blade forces, specifically the force generated in the upstream direction had a strong linear correlation with the upstream flow divergence. / Thesis / Master of Applied Science (MASc)
|
7 |
Desempenho vegetativo e produtivo de macieiras Fuji-kiku-8® e Maxigala em diferentes sistemas de condução em Vacaria, RS / The vegetative and productive performance of Fuji-kiku-8® & Maxigala apple trees in different training systems at Vacaria, RSSander, Guilherme Fontanella 15 April 2015 (has links)
Made available in DSpace on 2016-12-08T16:44:51Z (GMT). No. of bitstreams: 1
PGPV15MA177.pdf: 752563 bytes, checksum: 4fce88fb9643f9cfe11263390f3012f4 (MD5)
Previous issue date: 2015-04-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nowadays Brazil is self sustaining in apple. The production is located in
micro regions in Southern Brazil, in Santa Catarina and Rio Grande do
Sul State. The technology and innovation need to be allied of the
technicians and growers, responsible for the nacional production. The
decision of which training system that will be used, it is one of the
decisions that needs to do at planning to plant a new orchard. Is there so
many training systems around the world. The choosed system wills
interfer directlly in the profitability of the orchard. Nationally, the
traditional system used is central leader system, with some changes,
depending on the region that it is installed. With those informations, the
aim of this study was evaluate different training systems in trials that
combine the two most growed cultivars, Gala and Fuji, combined with
the two most used rootstocks, M.9 and Marubakaido with interstem of
M.9. The training systems evaluated were Vertical Axis, Tall Spindle
and Solaxe at Vacaria-RS. The study concludes that Kiku-8®‟, grafted
on M.9 tends to be a bi-annual bearing in all systems, the same cultivar
was more vigorous when grafted on Marubakaido‟ trained in Vertical
Axis. Maxi Gala‟ showed more vigour when trained in Vertical Axis in
both rootstocks. All systems did not have effect in fruit quality
parameters, like total soluble solids, flesh firmness and fruit size. It is
necessary more labor hours Solaxe System in the most part of the
combinations.The choice of which training system is the best to use,
needs to be embased with data of more years of study / O Brasil é autossustentável em maçãs. A produção está concentrada em
micro regiões no Sul do Brasil, nos estados de Santa Catarina e Rio
Grande do Sul. A tecnologia e inovação devem ser aliadas dos técnicos
e produtores responsáveis pela produção nacional. A decisão de qual
sistema de condução é um dos intens a ser planejados antes mesmo da
implantação do pomar. Diversos são os sistemas de condução existentes,
existindo diferentes preferências nas diversas regiões produtoras ao
redor do mundo. O sistema de condução escolhido vai inferir
diretamente na rentabilidade do pomar. Nacionalmente o sistema de
condução tradicional é em líder central, variando sua forma conforme
local e tecnologia empregada. A partir dessas considerações objetivouse
nesse trabalho avaliar diferentes sistemas de condução que utilizam
líder central, em experimentos combinados com as cultivares mais
produzidas no país, Gala e Fuji e com dois dos portaenxertos, M.9 e
Marubakaido com interenxerto de M.9. Os sistemas de condução são o
Vertical Axis, Solaxe e Tall Spindle, no município de Vacaria (RS).
Pode-se concluir neste estudo que Kiku-8®‟ enxertado sobre M.9
mostra tendência a alternância de produção em todos os sistemas de
condução, a mesma foi mais vigorosa quando enxertada sobre
Marubakaido‟ e conduzida em Vertical Axis. Para a Maxi Gala‟
também o sistema Vetical Axis foi o qu mais induziu vigor nos dois
portaenxertos utilizados. Os sistemas de condução não interferem nos
fatores de qualidade de frutos como teor de sólidos solúveis, firmeza de polpa e tamanho de fruto. É necessário maior número de horas de mãode- obra no sistema Solaxe na maior parte das combinaçõe. A decisão para seleção de sistemas de condução terá que ser feita com base em resultados de mais safras
|
8 |
Hydrodynamic analysis of a vertical axis tidal current turbineGretton, Gareth I. January 2009 (has links)
Tidal currents can be used as a predictable source of sustainable energy, and have the potential to make a useful contribution to the energy needs of the UK and other countries with such a resource. One of the technologies which may be used to transform tidal power into mechanical power is a vertical axis turbine, the hydrodynamic analysis of which this thesis is concerned with. The aim of this analysis is to gain a better understanding of the power transformation process, from which position there is the possibility of improving the conversion efficiency. A second aim is to compare the results from different modelling approaches. Two types of mathematical modelling are used: a basic blade element momentum model and a more complex Reynolds-averaged Navier Stokes (RANS) model. The former model has been programmed in Matlab by the present author while the latter model uses a commercial computational fluid dynamics (CFD) code, ANSYS CFX. This RANS model uses the SST k-! turbulence model. The CFD analysis of hydrofoils (equally airfoils), for both fixed and oscillating pitch conditions, is a significant proportion of the present work. Such analysis is used as part of the verification and validation of the CFD model of the turbine. It is also used as input to the blade element momentum model, thereby permitting a novel comparison between the blade element momentum model and the CFD model of the turbine. Both types of turbine model were used to explore the variation in turbine efficiency (and other factors) with tip speed ratio and with and without an angle of attack limiting variable pitch strategy. It is shown that the use of such a variable pitch strategy both increases the peak efficiency and broadens the peak. The comparison of the results from the two different turbine modelling approaches shows that when the present CFD hydrofoil results are used as input to the blade element model, and when dynamic effects are small and the turbine induction factor is low, there is generally good agreement between the two models.
|
9 |
Estudo comparativo experimental e numérico sobre o desempenho de turbinas savonius helicoidal e de duplo-estágioKothe, Leonardo Brito January 2016 (has links)
O presente trabalho apresenta um estudo numérico e experimental sobre o desempenho aerodinâmico de turbinas eólicas de eixo vertical envolvendo rotores Savonius convencional de duplo-estágio e helicoidal. O estudo experimental é realizado no Túnel Aerodinâmico Professor Debi Pada Sadhu, do Laboratório de Mecânica dos Fluidos da UFRGS. As simulações numéricas são realizadas com o software Fluent/ANSYS utilizando o Método dos Volumes Finitos. São comparados os coeficientes de torque estático e dinâmico, o coeficiente de potência, além de uma análise aerodinâmica das duas turbinas. As medições são realizadas empregando Tubos de Pitot, um torquímetro estático digital e um torquímetro simples construído para a medição do torque dinâmico. As turbinas são fabricadas através da técnica de prototipagem 3D, com uma semelhança de dimensões e parâmetros. As soluções numéricas são resolvidas através da equação da continuidade, das equações de Navier-Stokes com médias de Reynolds (RANS) e pelo modelo de turbulência k-ω SST. A qualidade da malha utilizada é avaliada através do método de Índice de Convergência de Malha (GCI), para três diferentes tamanhos de malha. São feitas análises dos rotores na forma estática para diferentes ângulos de incidência e com a turbina em rotação são feitas análises para diferentes razões de velocidades de ponta de pá (λ). Resultados demonstram que a turbina helicoidal apresenta um coeficiente de torque positivo para todos os ângulos do rotor, assim como a turbina convencional de dois estágios. O coeficiente de torque dinâmico da turbina helicoidal é superior ao da turbina de duplo-estágio para a maioria dos casos, e também apresenta menor oscilação de torque ao longo de cada rotação. Por consequência, o coeficiente de potência do rotor helicoidal também se tornou superior, com um valor máximo encontrado na ordem de 11,8% para um λ de 0,65 no caso experimental, e de 8,4% para o mesmo λ no caso numérico, quando comparado com o rotor de duplo-estágio. Os erros relativos entre as simulações numéricas e os resultados experimentais estão entre 2,16% e 13,4%. Uma estimativa de potência gerada é feita para ambos os casos, para uma razão de velocidade de ponta de 0,65, onde a turbina helicoidal apresenta melhores resultados em relação ao rotor de duplo-estágio, na ordem de 13,6% para uma velocidade de 10,4 m/s. / This paper presents a numerical and experimental study of vertical axis wind turbine performance comparison involving two-stage and helical Savonius rotors. The experimental study is conducted in the Aerodynamic Tunnel Professor Debi Pada Sadhu at the Fluid Mechanics Laboratory of the UFRGS. The numerical simulations are performed with the Fluent/ANSYS software using the Finite Volumes Method. The static and dynamic torque coefficients, the power coefficients, and an aerodynamic analysis of the two turbines are compared. Measurements are made using Pitot tubes, a digital static torque wrench and a simple wrench constructed for the dynamic torque measurement. The aerodynamics rotors are manufactured by 3D prototyping technique with similar dimensions and parameters. Numerical solutions are solved by the continuity equation, the Reynolds Averaged Navier-Stokes (RANS) equations and the turbulence model k-ω SST. The quality of the mesh used is evaluated used the Grid Convergence Index (GCI) method, for three different mesh sizes. The rotors analyzes are made in static form for different angles of incidence and for the rotating turbine analyzes are made for differents tip speed ratio (λ). Results show that the helical turbine has a positive static torque coefficient for any rotor angles, as well as conventional two-stage turbine. The dynamic torque coefficient of the helical turbine is higher than the two-stage turbine for most cases and also shows less torque variation along each rotation. Consequently, the power coefficient of the helical rotor also become higher, with a maximum value found on the order of 11.8% for a λ of 0.65 in the experimental case, and 8.4% for the same λ number when compared with the two-stage rotor. The relative errors between the numerical simulations and the experimental results are between 2.16% and 13.4%. A generated power estimate is made for both cases, for a tip speed ratio of 0.65, where the helical turbine provides better results compared to two-stage rotor in order of 13.6% for a velocity of 10.4 m/s.
|
10 |
The Development of a Vertical-Axis Wind Turbine Wake Model for Use in Wind Farm Layout Optimization with Noise Level ConstraintsTingey, Eric Blaine 01 March 2017 (has links)
This thesis focuses on providing the means to use vertical-axis wind turbines (VAWTs) in wind farms as an alternative form of harnessing wind energy in offshore and urban environments where both wake and acoustic effects of turbines are important considerations. In order for VAWTs to be used in wind farm layout analysis and optimization, a reduced-order wake model is needed to calculate velocities around a turbine quickly and accurately. However, a VAWT wake model has not been available to accomplish this task. Using vorticity data from computational fluid dynamic (CFD) simulations of VAWTs and cross-validated Gaussian distribution and polynomial surface fitting, a wake model is produced that can estimate a wake velocity deficit of an isolated VAWT at any downstream and lateral position based on nondimensional parameters describing the turbine speed and geometry. When compared to CFD, which takes over a day to run one simulation, the wake model predicts the velocity deficit at any location with a normalized root mean squared error of 0.059 in about 0.02 seconds. The model agrees with two experimental VAWT wake studies with a percent difference of the maximum wake deficit of 6.3% and 14.6%. Using the actuator cylinder model with predicted wake velocities of multiple turbines, aerodynamic loads can be calculated on the turbine blades to estimate the power production of a VAWT wind farm. As VAWTs could be used in urban environments near residential areas, the noise disturbance coming from the turbine blades is an important consideration in the layout of a wind farm. Noise restrictions may be imposed on a wind farm to limit the disturbance, often impacting the wind farm's power producing capability. Two specific horizontal-axis wind turbine farm designs are studied and optimized using the FLORIS wake model and an acoustic model based on semi-empirical turbine noise calculations to demonstrate the impact a noise level constraint has on maximizing wind farm power production. When a noise level constraint was not active, the average power production increased, up to 8.01% in one wind farm and 3.63% in the other. Including a noise restriction in the optimization had about a 5% impact on the optimal average power production over a 5 decibel range. By analyzing power and noise together, the multi-modality of the optimization problem can be used to find solutions were noise impact can be improved while still maximizing wind farm power production.
|
Page generated in 0.1021 seconds