Spelling suggestions: "subject:"vesicles recycling""
1 |
Régulation du cycle vésiculaire et de l’approvisionnement en GABA des interneurones de l’hippocampe en fonction de l’activité / Regulation of GABA supply and vesicular cycle in function of activity of hippocampal interneuronsBonet, Laurine 30 September 2016 (has links)
Les interneurones GABAergiques dans l’hippocampe forment de petites populations diverses de neurones inhibiteurs contrôlant le transfert d’informations dans de larges ensembles de cellules principales. Ils compensent leur infériorité numérique par de vastes arborisations axonales capables de maintenir une libération vésiculaire de GABA à haute fréquence, et d’ajuster précisément la balance entre excitation et inhibition pour différents régimes d’activité du réseau. Les petites synapses centrales contiennent un nombre limité de vésicules synaptiques dont le recyclage par endocytose est essentiel au maintien de la transmission pendant une activité répétée. Le remplissage en GABA de ces vésicules recyclées est dépendant d’un approvisionnement des terminaisons en GABA suffisant pour faire face à la demande de recyclage créée par l’activité. Nos résultats mettent en évidence de nouveaux mécanismes d’adaptation de l’approvisionnement aux besoins imposés par le recyclage vésiculaire selon le régime d’activité, ainsi qu’un couplage direct entre le cycle de neurotransmetteurs et le cycle vésiculaire. Nous montrons que les transporteurs de glutamine sont responsables d’une potentialisation de l’approvisionnement des varicosités en GABA lors d’une activité répétée, probablement par une augmentation du nombre de ces transporteurs à la membrane. En développant et en utilisant des paradigmes expérimentaux nouveaux, nous montrons que la régulation métabolique du cycle vésiculaire passe par une adaptation du pool de vésicules recyclantes à la disponibilité en neurotransmetteurs. La nature du senseur de cette régulation et sa localisation cytosolique ou luminale restent à déterminer / In the hippocampus, GABAergic interneurons represent only 10% of the neuronal population but are able to synchronize the activity of large neuronal networks. They compensate their numerical inferiority by a large axonal arborization to sustain synaptic activity at high frequency and adjust the balance between excitation and inhibition for different regime of activity. Since small central synapses contain a limited pool of vesicles, their recycling by endocytosis is essential to maintain transmission during repeated activity. The filling of recycling vesicles with GABA is dependent on its supply in terminals which should be adjusted to the demand imposed by vesicular recycling. Our results reveal new transporter mechanisms that adapt GABA supply to neuron activity, suggesting a direct coupling between the neurotransmitter and the vesicle cycles. We show that high recycling activity increases GABA supply, probably by increasing the number of glutamine transporters at the membrane. By developing and using FM5-95 and VGAT-pHluorin with a new experimental paradigm, we provide evidence for a metabolic regulation of the vesicle cycle that involves a dynamic adaptation of the recycling pool to the neurotransmitter availability. The nature of the sensor of this regulation and its cytosolic or luminal location remain to be determined.
|
2 |
Synaptic vesicle recycling in preclinical models of intellectual disability, autism spectrum disorder and epilepsyBonnycastle, Katherine January 2018 (has links)
The development of the central nervous system is dysregulated in neurodevelopmental disorders such as intellectual disability, autism spectrum disorder, and epilepsy. These three disorders have different clinical features, yet there is high comorbidity between them. They can be difficult to study due to their highly complex aetiologies, however there are various monogenic diseases that can cause all of them, including SYNGAP1 haploinsufficiency where the synaptic guanosine triphosphatase (GTPase)-activating protein (SYNGAP) protein levels are highly reduced; Fragile X syndrome where the fragile X mental retardation protein (FMRP) is no longer translated; and DNM1 epileptic encephalopathy where mutations in the Dynamin1 gene alter the protein function. These monogenic conditions are synaptopathies as the proteins affected play important roles in synapse stability and neurotransmission. Because of the high comorbidity between these disorders, it is hypothesised that there may be a common mechanism underlying them. We hypothesise that a deficit in presynaptic vesicle recycling may be part of a common mechanism underlying intellectual disability, autism spectrum disorder, and epilepsy especially in SYNGAP1 haploinsufficiency, Fragile X syndrome, and DNM1 epileptic encephalopathy. Using various fluorescent presynaptic activity reporters including synaptic pHluorins, tetramethylrhodamine dextran and calcium dyes to compare presynaptic activity in in vitro models of these monogenic conditions, we found differences in synaptic vesicle (SV) endocytosis in the genetically altered conditions compared to wildtype controls. We observed various SV endocytosis defects in clathrin-mediated endocytosis (CME) or activity-dependent bulk endocytosis (ADBE) in our models. We observed enhanced CME in SynGAP1 KO mouse hippocampal neurons. This enhanced SV endocytosis was accompanied by decreased SV cargo on the plasma membrane. Rat SynGAP1 KO hippocampal neurons did not display enhanced SV endocytosis, nor did neurons with the GTPase-activating (GAP) domain of SynGAP deleted. This was perhaps due to the altered time course of development between these rodent species. In mouse and rat models of Fragile X syndrome, CME was not altered compared to wildtype controls. However, in a rat model, we observed fewer nerve terminals undergoing ADBE which is the dominant SV endocytosis mode during elevated neuronal activity. De novo epileptic encephalopathy-associated mutations in DNM1 had differential effects on SV recycling through both CME and ADBE. Mouse hippocampal neurons overexpressing Dyn1R237W, Dyn1I289F and Dyn1H396D all showed less CME compared to overexpression of Dyn1WT. Moreover, fewer nerve terminals overexpressing Dyn1H396D were found to undergo ADBE. We also found that a large-conductance potassium (BK) channel opener can accelerate clathrin-mediated endocytosis and thus may be able to rescue the impaired SV endocytosis caused by these mutants. Although there is not yet a common underlying pathway at the presynaptic level between these conditions, SV recycling dysfunction is present across all of these models. Furthermore, we propose an axis of pathophysiology model where optimal SV endocytosis is required for optimised neural performance. We propose that either decreased or increased SV endocytosis can lead to the synaptic dysfunction observed in these models.
|
3 |
Activity-dependent bulk endocytosis : control by molecules and signalling cascadesNicholson-Fish, Jessica January 2017 (has links)
Synaptic vesicle (SV) recycling in the presynapse is essential for the maintenance of neurotransmission. During mild stimulation clathrin-mediated endocytosis (CME) dominates, however during intense stimulation activity-dependent bulk endocytosis (ADBE) is the dominant form of membrane retrieval. The aim of this thesis was to determine how the signalling molecule GSK3 controlled ADBE, with the hypothesis that this enzyme was required at multiple stages of this endocytosis mode. I also hoped to identify a specific cargo for ADBE. I found that during intense action potential stimulation, a localised calcium increase is necessary for the activation of Akt, which inhibited GSK3. This activation was mediated via a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. Furthermore, I found that phosphatidylinositol 4-kinaseIIα (PI4KIIα), a molecule whose abundance is regulated by GSK3, had a key role in ADBE. Specifically, I found that the absence of PI4KIIα accelerated CME but inhibited ADBE and that PI4KIIα controls CME and ADBE via distinct mechanisms. The PI4KIIα study revealed potential cross-talk between CME and ADBE. To determine whether modulation of either endocytosis mode impacts on the other, the retrieval of genetically-encoded reporters of SV cargo was monitored during intense stimulation during inhibition of either CME or ADBE. The recovery of almost all SV cargo was unaffected by ADBE inhibition but was arrested by abolishing CME. In contrast, VAMP4-pHluorin retrieval was perturbed by inhibiting ADBE and not by blocking CME. Knockdown of VAMP4 also arrested ADBE, indicating that in addition to being the first identified ADBE cargo, it is also essential for this endocytosis mode to proceed.
|
4 |
Molecular mechanisms of synaptic vesicle recycling with a focus on Endophilin A and Rabconnectin-3aGowrisankaran, Sindhuja 01 November 2021 (has links)
No description available.
|
5 |
The molecular anatomy of synaptic vesicle recycling at the hair cell ribbon synapseRichter, Katharina Natalia 15 August 2019 (has links)
No description available.
|
6 |
Image analysis and computational modelling of Activity-Dependent Bulk Endocytosis in mammalian central nervous system neuronsStewart, Donal Patrick January 2017 (has links)
Synaptic vesicle recycling is the reuse of synaptic membrane material and proteins after vesicles have been exocytosed at the pre-synaptic terminal of a neuronal synapse. The discovery of the mechanisms by which recycling operates is a subject of active research. Within small mammalian central nervous system nerve terminals, two studied mechanisms of recovery are clathrin-mediated endocytosis and activity-dependent bulk endocytosis. Research into the comparative kinetics and mechanisms underlying these endocytosis mechanisms commonly involves time-series fluorescence microscopy of in vitro cultures. Synaptic proteins are tagged with fluorescent markers, or the synaptic vesicles are labelled with fluorescent dye. The change in fluorescence levels of individual synapses over time in response to stimuli is used to understand synaptic activity. The image analysis of these time-series images frequently requires substantial manual effort to extract the changing synaptic fluorescence intensity levels over time. This work focusses on two closely interlinked areas, the development of improved automated image analysis tools to facilitate the analysis of microscopy image data, and computational simulations to leverage the data obtained from these experiments to gain mechanistic insight into the underlying processes involved in synaptic vesicle recycling. The imaged properties of synapses within the time-series images are characterised, in terms of synapse movement during the course of an experiment. This characterisation highlights the properties which risk adding error to the extracted fluorescence intensity data, as analysis generally requires segmentation of regions of interest with fixed size and location. Where possible, protocols to optimise the manual selection of synapses in the image are suggested. The manual selection of synapses within time-series images is a common but time consuming and difficult task. It requires considerable skill on the part of the researcher to select synapses from noisy images without introducing error or bias. Automated tools for either general image segmentation or for segmentation of synapse-like puncta do exist, but have mixed results when applied to time-series experiments. This work introduces the use of knowledge of the experiment protocol into the segmentation process. The selection of synapses as they respond to known stimuli is compared against other current segmentation methods, and tools to perform this segmentation are provided. This use of synapse activity improves the quality of the segmented set of synapses over existing segmentation tools. Finally, this work builds a number of computational models, to allow published individual data points to be aggregated into a coherent view of overall synaptic vesicle recycling. The first is FM-Sim, a stochastic hybrid model of overall synapse recycling as is expected to occur during the course of an experiment. This closed system model handles the processes of exocytosis and endocytosis. It uses Bayesian inference to fit model parameters to experimental data. In particular, it uses the experimental protocol to separate the mechanisms and rates that may contribute to the observed experimental data. The second is a mathematical model of one aspect of synaptic vesicle recycling of particular interest - homoeostasis of plasma membrane integrity on the presynaptic terminal. This model provides bounds on efficiency of the studied endocytosis mechanisms at recovery of plasma membrane area during and after neuronal stimulus. Both the image analysis and the computational simulations demonstrated in this work provide useful tools and insights into current research of synaptic vesicle recycling and the role of activity-dependent bulk endocytosis. In particular, the utility of adding time-dependent experimental protocol knowledge to both the image analysis tools and the computational simulations is shown.
|
7 |
Deleterious effects of synuclein in injury-induced neurodegeneration and in a synaptic model of Parkinson’s DiseaseBusch, David James 03 October 2012 (has links)
Synucleins represent a conserved family of small proteins that include α-, β-, and
γ- isoforms, which are highly expressed in neurons of the vertebrate nervous system. The
normal function of these proteins is not well understood. However, in humans α-
synuclein dysfunction is causatively linked to Parkinson’s Disease (PD), where it
abnormally accumulates in neuronal cell bodies as protein aggregates that are associated
with neuronal death. Although the associations between synuclein accumulation and
cellular death are established in PD, the extent to which this occurs in other contexts,
such as neuronal injury, is unknown. Furthermore, the effects of synuclein aggregation
on the function of synapses, where synuclein is normally localized, are not well
understood. To address these questions I took advantage of the experimentally accessible
nervous system of the sea lamprey (Petromyzon marinus). I used molecular cloning and
phylogenetic analyses to characterize three lamprey synuclein orthologues, one of which
is highly expressed within a class of neurons called the giant reticulospinal (RS) neurons.
Spinal cord injury induces the accumulation of synuclein protein only within a population
of poor surviving RS neurons, and this accumulation is correlated with cellular death.
Thus, similar to PD, the abundance of synuclein protein is associated with neuronal
toxicity. In a related project, I demonstrated that elevating synuclein levels at synapses, such as occurs in PD, is deleterious to synaptic function through an inhibition of synaptic
vesicle (SV) recycling. By injecting excess synuclein protein directly into the axons of
giant RS neurons, and analyzing the ultrastructural morphology of synapses, I have
shown that clathrin-mediated synaptic vesicle endocytosis was greatly inhibited. The
conserved N-terminal domain was sufficient to inhibit vesicle recycling, and injecting
synuclein mutants with disrupted N-terminal α-helices caused reduced defects in SV
recycling. Therefore the α-helical structure of the N-terminus is necessary to inhibit SV
recycling at early stages of clathrin-mediated endocytosis. Binding interactions with
clathrin-mediated endocytosis components, such as the phosphoinositide lipid PI(4)P
support this hypothesis. These studies provide a better understanding of the mechanisms
by which synuclein dysfunction leads to neuronal death after injury and synaptic
dysfunction in PD and other synuclein-associated diseases. / text
|
8 |
A novel membrane-binding probe for the morphological and molecular characterization of synaptic vesicle recycling pathwaysRevelo Nuncira, Natalia Hasel 11 June 2014 (has links)
No description available.
|
9 |
Investigation of Protein - Protein Interactions in Clathrin-Mediated Membrane Transport / Investigation of Protein - Protein Interactions in Clathrin-Mediated Membrane TransportJung, Nadja 01 November 2006 (has links)
No description available.
|
10 |
Mechanisms of benzyl alcohol tolerance in Drosophila melanogasterAlhasan, Yazan Mahmoud 19 August 2010 (has links)
Proper neuronal function requires the preservation of appropriate neural excitability. An adaptive increase in neural excitability after exposure to agents that depress neuronal signaling blunts the sedative drug effects upon subsequent drug exposure. This adaptive response to drug exposure leads to changes in drug induced behaviors such as tolerance, withdrawal and addiction. Here I use Drosophila melanogaster to study the cellular and neuronal components which mediate behavioral tolerance to the anesthetic benzyl alcohol. I demonstrate that rapid tolerance to benzyl alcohol is a pharmacodynamic mechanism independent of drug metabolism. Furthermore, tolerance is a cell autonomous response which occurs in the absence of neural signaling. Using genetic and pharmacological manipulations I find the synapse to play an important role in the development of tolerance. In addition, the neural circuits that regulate arousal and sleep also alter benzyl alcohol sensitivity. Beyond previously described transcriptional mechanisms I find a post-translational role of the Ca2+-activated K+-channel, slowpoke in the development of tolerance. Finally, I explore a form of juvenile onset tolerance, which may have origins that differ from rapid tolerance. The implications of this study go beyond tolerance in Drosophila melanogaster to benzyl alcohol and can shed light on human drug tolerance, withdrawal and addiction. / text
|
Page generated in 0.0806 seconds